
Distributional effects of capital and labor
on economic growth

Micha l Paluch Marc Schiffbauer

University of Bonn∗

PRELIMINARY VERSION
(please do not cite without permission)

First version: February 2007
This version: November 14, 2007

Abstract

In the following, we propose a growth model for an economy consisting of firms which
are heterogeneous in technologies and input demands. We show that the growth rate in
this economy depends not only on changes in the aggregate level of capital and labor, but
also on changes in the allocation of these inputs across firms. As the latter effects are
neglected in conventional growth models, they are misleadingly captured by the residual
TFP measure. In contrast, we are able to quantify the influence of these components. Our
empirical analysis, which is based on structural estimation from firm-level data, reveals
that changes in allocation of capital and labor have pronounced effects on GDP-growth for
most European countries. Further, we take cross-country differences in the distributional
effects into account to improve conventional growth accounting exercises. In particular,
we find that they explain additionally up to 17% of growth differences among 19 European
countries. Consequently, allowing for heterogeneity in firm-level technologies and input
demands increases the explanatory power of the inputs.

∗University of Bonn, Department of Economics, Adenauerallee 24-26, D-53113 Bonn, Germany. E-mail
addresses for correspondence: paluch@uni-bonn.de (M. Paluch), mschiffb@uni-bonn.de (M. Schiffbauer).

1



1 Introduction

In the following, we propose a growth model for an economy consisting of firms which are

heterogeneous in technologies and input demands. We show that the growth rate in this

economy depends not only on changes in the aggregate level of capital and labor, but also on

changes in the allocation of these inputs across firms. As the latter effects are neglected in

conventional growth models, they are misleadingly captured by the residual measure, referred

to as total factor productivity (TFP). In contrast, we are able to quantify the influence of

these components by structural estimation from firm-level data. Further, we take cross-country

differences in the distributional effects into account to improve conventional growth accounting

exercises.

Why do some countries grow and others stagnate?1 This question initiated the growth

accounting literature, which assigns cross-country differences in growth or income to differences

in physical and human capital as well as the unobservable efficiency with which input factors

are combined. The consensus view in this literature is that only approximately one third of

the cross-country growth or income differences is explained by differences in input factors.

The residual two thirds are left unexplained and attributed to differences in the unobservable

efficiency which is referred to as total factor productivity (TFP).2 In this context, Abramovitz

(1956) refers to TFP as the measure of our ignorance.

The fact that TFP is unobservable and at the same time explains the major part of cross-

country differences triggered tremendous efforts to identify its determinants in recent years.3

However, we show in this paper that the above growth accounting results have to be revised

if one consistently aggregates over heterogeneous firms. In order to illustrate the relevance

of aggregation for growth models we briefly discuss fundamental results of the aggregation

literature.

The pillar of every macroeconomic growth model is an aggregate production function F ,

which relates aggregate capital K̄ and labor L̄ to aggregate output Ȳ , i.e., Ȳ = F (K̄, L̄).

However, although there exists a well developed microeconomic theory of production for a

single firm, there is no corresponding theoretical foundation for the entire economy. In fact,

the aggregate production function suffers from two types of aggregation problems. The first,

1The Science magazine considers this question as one of the 125 “most compelling puzzles and questions
facing scientists today” (Science, 2005).

2See, for example, Caselli (2005), Hall and Jones (1999) or Jorgensen (2005).
3This issue is best summarized by the title of a recent paper by Prescott (1998) “Needed: A Theory of Total

Factor Productivity.”
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often referred to as the “measurement problem,” involves the aggregation of different types

of capital, labor, and output within a firm into one capital and labor input and one output.

The second is concerned with aggregation of heterogeneous technologies and input demands

across firms into their aggregate counterpart. These problems have been dealt with extensively

in the aggregation literature. Early works by Nataf (1948), Gorman (1953), and a series of

papers by Franklin Fisher (collected in Fisher, 1993)4 have shown that in the absence of perfect

competition and perfect factor mobility the aggregate production function F cannot be linked to

microeconomic production functions unless all firms operate according to identical and constant

returns to scale technologies.

A frequent short-cut that circumvents the problem of aggregation over heterogeneous tech-

nologies is the assumption that the production function of an entire economy complies with

the one of a single representative firm. Although the above theoretical results show that this

link is only possible under very restrictive assumption, it is often applied in theoretical and

empirical analysis due to its simplicity. However, from a practical point of view, growth models

that ignore consistent aggregation over heterogeneous firms will suffer from serious drawbacks:5

they neglect growth effects of (i) changes in the allocation of inputs6 and (ii) changes in the

pattern of economic interactions between firms. Yet, it is reasonable to expect that these fac-

tors affect growth substantially, since they represent changes in growth due to changes in the

market structure. For example, differences in the degree of competition in different industries

as well as different incentives to innovate for small, medium, and large firms are found to af-

fect technological change (see, e.g., Aghion and Griffith, 2005). Where are these effects in the

growth literature? As they are not assigned to the levels of aggregate capital or labor, they are

assigned to the unobserved efficiency. Therefore, they are misleadingly captured by the residual

TFP measure.

4For a comprehensive survey on aggregation of production functions, see Felipe and Fisher (2003).
5Hopenhayn (1992) initiated a literature on the effect of firm heterogeneity on industry dynamics. His

approach was extended, e.g., by Melitz (2003) to analyze the impact of trade liberalization on the aggregate
productivity of an economy. In these models firms are heterogeneous in productivity which is included in a way
such that the impact of the productivity distribution on aggregate demand for inputs is fully determined by the
average productivity. Consequently, under this parsimonious aggregation rule, aggregate output depends on
average productivity and average input demands but not on the allocation of inputs across firms. That is, once
the average productivity level is determined the model yields identical aggregate outcomes as a model based on
a representative firm.

6Empirical studies document that these changes are substantial in developed and developing countries. For
example, Roberts and Tybout (1997) quantify the rate of labor reallocation among manufacturing firms between
25 and 30 percent.
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In order to assess the impact of changes in the allocation of capital and labor on growth,

we apply the aggregation procedure established by Hildenbrand and Kneip (2005). Our main

result is that the growth rate of aggregate output depends on changes in the levels of aggregate

capital and labor as well as changes in the distribution of capital and labor in the economy.

We quantify the growth effect of each component by means of structural estimation based on

firm-level data. These effects are estimated separately for each of 20 European countries. Our

main findings are that distributional effects are significant in all countries. Further they are as

large as the corresponding level effects in most countries. Finally, we exploit the information on

the different distributional changes across countries to conduct a growth accounting exercise.

More precisely, we assess the explanatory power of the distributional changes with respect to

cross-country growth differences. It turns out that these effects explain additionally up to 17%.

Accordingly, an aggregation approach that consistently accounts for firm heterogeneity can

help explain the growth path of a single country as well as cross-country growth differences.

Hence, the role of capital and labor in explaining the growth path of a single country or growth

differences across countries is understated.

In the next section, we present our growth model for an economy consisting of heterogeneous

firms. In Section 3, we describe the data, the empirical strategy, and discuss our results. Section

4 presents the growth accounting exercise, whereas the final section concludes.

2 The Model

Assume that in period t each firm j from a heterogeneous population of firms Jt produces

according to the firm-specific production function f j
t (·) defined by

Y j
t = f j

t (Kj
t , L

j
t),

where Y j
t denotes the output level, Kj

t the capital stock and Lj
t the labor demand.7 Further,

we assume that the heterogeneity in production functions f j
t , i.e., in technologies and input

demands, can be parametrized by a vector of parameters V j
t . In general, V j

t is unobservable.

Then one can write

Y j
t = f(Kj

t , L
j
t , V

j
t ). (1)

Hence, technological changes over time translate into changes in the distribution of V j
t across Jt.

The function f can therefore, without loss of generality, be regarded as time-invariant and equal

for all individuals. In the simplest scenario, f could be a Cobb-Douglas production function

7One can easily extend the model to the case of multiple capital and labor inputs.
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with V j
t = (V j

1,t, V
j
2,t) such that Y j

t = V j
1,t ·K

j
t

V j
2,t · Lj

t

1−V j
2,t . However, in order to establish our

main result at the aggregate level, an explicit parametric specification of f is not required.

In the above setup, we define aggregate output Ȳt in period t as

Ȳt =

∫
f(K,L, V ) dGt,KLV , (2)

where K, L, and V are generic random variables corresponding to capital, labor, and unobserv-

able productivity parameters of a randomly chosen firm, respectively, and Gt,KLV is the joint

distribution of (K,L, V ) across the population Jt. Thus, GKLV is the explanatory variable for

aggregate output. However, we do not need to model GKLV but only its changes over time,

since our objective is to determine the growth rate instead of the level of aggregate output.

In order to impose a structure on the evolution of the unobservable distribution of V , we

introduce a set of observable firm specific attributes Aj
t with the corresponding random variable

A, which are expected to be correlated with V : the age of a firm, the region or industry in

which it operates, its ownership structure, and its legal form.

Further, we use A to decompose Gt,KLV into the distributions Gt,V |KLA, Gt,A|KL, and Gt,KL.

The first is the conditional distribution of V given (K,L,A), the second is the conditional

distribution of A given (K,L), the third is the joint distribution of (K,L). We write

Ȳt =
∫ [∫ (∫

f(K, L, V ) dGt,V |KLA

)
dGt,A|KL

]
dGt,KL =

∫ (∫
f̄t(K, L, A) dGt,A|KL

)
dGt,KL, (3)

where f̄t(K,L,A) is the conditional mean of output Y given (K,L,A) in period t. Thus, it is

a regression function of Y on (K,L,A), which can be estimated from a cross-section of firms

in period t.

From (3) we infer that assumptions on changes in GV |KLA, GA|KL, and GKL are required

in order to model output growth. It is easier to model the evolution of a distribution if it is

symmetric, because a symmetric distribution can be well-described by its first few moments,

like its mean and variance. Since the distributions of capital and labor are right-skewed in all

countries, we formulate the model assumptions in terms of log capital kj
t := logKj

t and log

labor ljt := logLj
t with the corresponding random variables k and l. Further, we define k̄t and

l̄t as the mean of k and l across Jt, respectively, and σk
t and σl

t as the corresponding standard

deviations. In addition, by analogy to GV |KLA, GA|KL, and GKL, we define GV |klA, GA|kl, and

Gkl, respectively. In addition, Gk and Gl represent marginal distributions of log capital and log

labor, respectively. Finally, let Gk̃l denote a component-wise standardized joint distribution of

(k, l), which is defined as a joint distribution of (k̃, l̃), where k̃ := k−k̄
σk and l̃ := l−l̄

σl .

In line with the aggregation approach of Hildenbrand and Kneip (2005), we impose following

assumptions.
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Assumption 1: (“Structural stability”8 of Gkl) The component-wise standardized joint distri-

bution of log capital and log labor Gk̃l is approximately equal for two consecutive periods t and

t− 1, i.e., Gt,k̃l ≈ Gt−1,k̃l.

It is important to note that Gk̃l refers to a standardized distribution. That is, if Assumption

1 holds, the entire change in Gkl over two consecutive periods is fully captured by the changes

in means and the variances of kj
t and ljt .

9

In order to impose the assumption on the evolution of GA|kl we define kt,τ as the τ -quantile

of the distribution Gt,k and lt,η as the η-quantile of the distribution Gt,l.

Assumption 2: The conditional distribution of A given k = kτ and l = lη denoted by GA|kτ lη

is approximately equal for two consecutive periods t and t− 1, i.e., Gt,A|kτ lη ≈ Gt−1,A|kτ lη .

Assumption 2 refers to the distribution of A across firms with log capital and log labor in

the same quantile position (τ, η) of Gkl in period t and t − 1, instead of firms with the same

values of k and l. We employ the former specification since it increases the likelihood that we

condition on the same group of firms in both periods. That is, if Gkl shifts over time due to

a common trend, we refer to the same group of firms in both periods by conditioning on the

quantile position as opposed to conditioning on the same values of k and l.

Note that one is able to verify Assumptions 1 and 2, since Gkl and GA|kl are observable in

firm-level data. We document in the Appendix A that both assumptions are supported by our

8The concept of structural stability of a distribution relies on an empirical regularity that distributions of
individual variables across large populations of economic agents change very slowly over time. It has been first
noticed by Pareto (1896) and introduced into macroeconomic models by Malinvaud (1993). More precisely,
for a distribution of a certain parametric form, for example, the normal distribution, structural stability holds,
if its normal structure prevails and its entire evolution is captured by changes in its mean and its variance.
However, this concept of structural stability cannot be applied to distributions which are poorly approximated
by a parametric form. In this context, Hildenbrand and Kneip (1999) proposed a nonparametric counterpart
of Malinvaud’s idea. Instead of keeping the parametric structure constant and allowing for changes over time
in few parameters, one can keep these parameters constant and allow the shape of the distribution to vary over
time. This can be achieved by simple transformations of the distribution like centering (constant mean) or
standardizing (constant mean and variance). Accordingly, structural stability as defined by Hildenbrand and
Kneip (1999) holds, if a centered or standardized distribution does not change over two consecutive periods.

9To be more precise, Hildenbrand and Kneip (2005) model the evolution of Gkl in terms of a distribution

which is standardized by a full covariance matrix Σt :=

(
(σk

t )2 σkl
t

σkl
t (σl

t)
2

)
, instead of a component-wise stan-

dardized one, which uses the matrix Σ̃t =

(
(σk

t )2 0
0 (σl

t)
2

)
. Our version of the assumption is more stringent,

as it requires that the correlation between log capital and log labor is does not change significantly over two
consecutive periods. The main advantage of our formulation (see Proposition and Appendix C) is the possibility
to separate growth effects of changes in σk from growth effects of changes in σl.
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data. In contrast, one is not able to falsify the following two assumptions on GV |klA as they

concern a distribution of unobservable variables.

Let Jt(k, l, A) denote the subpopulation of firms with capital k, labor l and attributes A

and V̄t(k, l, A) denote the mean of V across Jt(k, l, A). Further, GṼ |klA denotes the centered

distribution of V across Jt(k, l, A), whereby Ṽ corresponds to the centered variable Ṽ := V −
V̄t(k, l, A).

Assumption 3: The distribution GṼ |klA is approximately equal for two periods t and t − 1,

i.e., Gt,Ṽ |klA ≈ Gt−1,Ṽ |klA.

Note that Assumption 3 is a very mild assumption since we allow for any form of hetero-

geneity in V across firms with different capital stocks, labor stocks, or firm characteristics.

Furthermore, we even allow for heterogeneity in V across firms with the same capital stock,

labor stock, and firm characteristics, as long as changes in GV |klA are captured by changes in

V̄ (k, l, A). In this case, we assume that V̄t(k, l, A) is additively separable in (k, l) and t. More

precisely,

Assumption 4: V̄t(k, l, A), can be additively factorized by V̄t(k, l, A) = ϕ(k, l, A) + ψ(t, A),

where the function ϕ is continuously differentiable in k and l.

Proposition: (Hildenbrand and Kneip, 2005) If Assumptions 1-4 hold, the growth rate of

aggregate output in the economy, gt := Ȳt−Ȳt−1

Ȳt−1
, is given by

gt = βk
t−1(log K̄t − log K̄t−1) + βl

t−1(log L̄t − log L̄t−1) (4)

+ γk
t−1

(σk
t − σk

t−1

σk
t−1

)
+ γl

t−1

(σl
t − σl

t−1

σl
t−1

)
(5)

+ (effects due to changes in V̄t−1(k, l, A))

+ (second order terms of the Taylor expansion).

The coefficients βk
t−1, β

l
t−1, γ

k
t−1, and γl

t−1 are defined in terms of partial derivatives of the

regression function f̄t−1(k, l, A). For s = {k, l} and S = {K,L}, βs
t−1, γ

s
t−1 are defined by

βs
t−1 =

1
Ȳt−1

∫
∂sf̄t−1(k, l, A) dGt−1,klA, (6)

γs
t−1 =

1
Ȳt−1

∫
(s − s̄t−1)∂sf̄t−1(k, l, A) dGt−1,klA −

βs
t−1

S̄t−1

∫
(s − s̄t−1) exp(s)dGt−1,s (7)

Remark 1: The proof is given in Hildenbrand and Kneip (2005). However, the above Proposi-

tion differs from the one in Hildenbrand and Kneip (2005) in two aspects. First, our Assumption
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1 relies on a component-wise standardization which makes it possible to separate growth effects

of changes in σk from growth effects of changes in σl. Second, we model the aggregate relation

in terms of the logarithm of aggregate variables, i.e., log K̄ and log L̄ and not the aggregates of

the logarithms of individual variables, i.e., k̄ and l̄. This distinction yields different definitions

of γk
t−1 and γl

t−1 and is essential to compare our model with conventional growth models, which

are based on (the logarithm of) aggregate variables. See Appendix C for the derivations.

From the above representation we infer that the growth rate g of aggregate output does not

only depend on changes in aggregate capital and aggregate labor (term (4)). It also depends

on changes in the allocation of inputs (term (5)) measured by the standard deviation of log

capital and log labor across firms.

The aggregate coefficients (βk
t−1, γ

k
t−1) and (βl

t−1, γ
l
t−1) depend on the derivatives of the

regression function f̄t−1 with respect to k and l, respectively. All other variables in (7) are

observable. The derivatives ∂kf̄t−1(k, l, A) and ∂lf̄t−1(k, l, A) can be estimated using a cross-

section of firms in period t − 1. Hence, they can be estimated independently of each other in

each period. It is important to note that in the estimation of our representation of the growth

rate no time-series model fitting takes place, which would require to include all potential growth

determinants. Our estimation procedure does not require the information on the growth rate

of aggregate capital and aggregate labor nor the corresponding standard deviations since the

computation of the aggregate coefficients is based on the estimation of a single cross section of

firms. In contrast, we are able to quantify the growth effect of changes in the distribution of

inputs without specifying an exhaustive model for the aggregate growth rate. We describe the

estimation methodology for these coefficients in more detail in Section 3.2.

Remark 2: Under Assumption 1 coefficients βk
t−1 and βl

t−1 can be interpreted as elasticities of

aggregate output with respect to aggregate capital and aggregate labor, respectively. Accord-

ingly, γk
t−1 and γl

t−1 are elasticities of aggregate output with respect to σk and σl, respectively.10

One expects βk
t−1 and βl

t−1 to be positive. However, to draw conclusions on the expected sign

of γk
t−1 and γl

t−1 one needs to impose additional assumptions on the impact of changes in the

market structure on the standard deviation of inputs. For example, if a higher degree of prod-

uct market competition leads to more similarity in firm size, negative γk
t−1 and γl

t−1 indicate a

positive relationship between growth and competition. Alternatively, we outlined above that

changes in the standard deviation represent changes in the pattern of economic interactions

between firms. These interactions comprise, for instance, technology spill-overs between firms.

If technology diffusion is stronger among more similar firms, we expect a negative relation

10See Hildenbrand and Kneip (2005) for a detailed discussion on the interpretation of the coefficients.
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between spill-overs and the standard deviation of inputs and, hence, negative γk
t−1 and γl

t−1.

Our theoretical result has an important implication for growth accounting. To illustrate this

point, let us hypothetically claim that all variables in our model other than capital and labor

do not change over time. Then, in a classical growth model, changes in Ȳ would be in part

attributed to changes in K̄ and L̄. However, a part of the change in Ȳ , which is not captured

by the effect of changes in K̄ and L̄, would be attributed to changes in aggregate TFP. Such a

conclusion, however, would be misleading, since we assumed that TFP did not change. From

the Proposition we know that it is the effect of changes in the distribution of inputs, which is

erroneously attributed to changes in TFP. Obviously, such a correct conclusion is only possible

in models which allow for input heterogeneity of firms.

3 Empirical Analysis

In the following, we structurally estimate the effects of changes in the level and allocation of

capital and labor on growth separately for each of 20 European countries in our sample.

3.1 Data

The analysis is based on European firm-level data from 2002 until 2004.11 The data stem

from the Bureau van Dijk’s AMADEUS data base. It contains information from firm balance

sheets and covers all firms in each country. We measure output as real12 value added. Capital

and labor are measured as real fixed tangible assets and the real total cost of of employees,13

respectively. Our procedure requires that the firms have non-missing observations in 2003.

Moreover, we only include countries in which data for at least 200 firms are available.

Furthermore, we include firm’s age and other variables to control for differences in economic

environment across firms. In particular, we account for industry-specific and region-specific

11We estimate the corresponding coefficients exclusively for 2003. Yet, we need additional observations in
2002 for the Olley and Pakes (1996) estimation procedure and in 2004 for the growth accounting exercise.

12Real variables are obtained by deflating by the national output price deflators. Unfortunately, price deflators
were not available at the industry level for most of the 20 European countries.

13We define labor in this way in order to account, to a certain extent, for differences in the quality of employees,
i.e., human capital, across firms. These differences are captured by the total cost of employees, as long as firms
that are characterized by the same capital stock, number of employees and the same attribute profile A, (that
is, the same industry, region, age, ownership structure, etc.) but a higher human capital stock pay higher wages.
We emphasize that the qualitative results do not change if we define labor as the number of employees. These
results are available from authors upon request.
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fixed effects, in that we distinguish sectors by means of two digit NACE codes and include

regional dummies. Moreover, we incorporate dummy variables that capture the ownership

status of a firm: (i) quoted takes value 1 if a firm is publicly quoted and 0 if not, while (ii)

indep1- indep9 correspond to independence indicators (defined in the AMADEUS data base)

which represent different shareholder structures. Finally, we include gross investment, measured

by the change in the capital stock plus depreciation, which is included as an instrument for the

unobservable technology shock in the estimation procedure of Olley and Pakes (1996).

The descriptive statistics of the variables for each country in 2003 and 2004 are listed in

Table 1. The first column indicates that the number of observations used for estimation varies

substantially across countries in our sample. These differences can be attributed to different fil-

ing regulations of individual countries. For example, German companies are not legally obliged

to reveal the information from their balance sheets. Hence, although the full sample for Ger-

many covers over 800,000 firms in 2003, joint information on value added, fixed tangible assets

and the number of employees is available for only roughly 6,000 German firms. In contrast,

the corresponding information is available for most companies in the Spanish or Italian sample

which contain about 360,000 and 117,000 observations in 2003, respectively. Analogously, mean

and variances of the variables differ noticeably across countries. We observe relatively large

firms in Germany, the Netherlands, Austria, Great Britain and Portugal, whereas the sample

covers relatively many small firms in Romania, Spain, Italy, and Sweden. Accordingly, we also

observe analog differences in the standard deviations.

Summing up, the data reveals a substantial amount of heterogeneity both across firms within

a country as well as across countries.

3.2 Estimation strategy

The aggregate coefficients βs
t and γs

t , s ∈ {k, l} can be estimated as (suitably weighted) average

derivatives in the regression of value added Y j
t on log capital kj

t , log labor ljt , and a vector of

firm specific attributes Aj
t , i.e., in the model

Y j
t = f̄t(k

j
t , l

j
t , A

j
t ; ζ) + uj

t , (8)

where ζ is the vector of parameters to be estimated and uj
t is the error term with E(uj

t) = 0.

Hence, according to (6) and (7), once consistent estimates ̂∂sf̄t(k, l, A; ζ) of ∂sf̄t(k, l, A; ζ),

s ∈ {k, l}, are obtained, one can estimate aggregate coefficients by

β̂k
t =

∑
j∈Jt

̂∂kf̄t(k
j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

, β̂l
t =

∑
j∈Jt

̂∂lf̄t(k
j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

, (9)
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γ̂k
t =

∑
j∈Jt

(kj
t − ˆ̄kt)

̂∂kf̄t(k
j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

− β̂k
t

K̄t

∑
j∈Jt

(kj
t − ˆ̄kt)K

j
t , and (10)

γ̂l
t =

∑
j∈Jt

(ljt − ˆ̄lt)
̂∂lf̄t(k

j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

− β̂l
t

L̄t

∑
j∈Jt

(ljt − ˆ̄lt)L
j
t . (11)

Our empirical strategy is focused on the model specification and estimation for f̄t. However,

our analysis revealed that a regression of yj
t := log Y j

t on (kj
t , l

j
t , A

j
t) provides a significantly

better model fit and stability of results, as compared to the regression of Y j
t on (kj

t , l
j
t , A

j
t).

Consequently, we estimate derivatives of f̄t from the model

yj
t = h̄t(k

j
t , l

j
t , A

j
t ; θ) + εj

t , (12)

where θ is the vector of parameters to be estimated and εj
t is the error term with E(εj

t) = 0. In

doing so, we use the fact that ∂sf̄t(k
j
t , l

j
t , A

j
t ; ζ̂) = Y j

t ∂sh̄t(k
j
t , l

j
t , A

j
t ; θ̂), if ζ̂ and θ̂ are consistent

estimates of ζ and θ, respectively.Our basic specification for h̄t is linear in (k, l, A) and can

be estimated using OLS. Further, we analyze the robustness of our results in two ways. First,

we control for possible simultaneity between εj
t and (k, l) using the Olley and Pakes (1996)

method. Second, we extend our analysis to a partially linear specification of h̄t, in which

the relationship between y and (k, l) is modeled nonparametrically. Doing this, we avoid a

parametric misspecification of h̄t.

The loglinear model

Our basic specification for h̄t is the loglinear model, i.e.,

yj
t = θ0 + θkkj

t + θlljt + θ′AA
j
t + εj

t , (13)

which implies that ̂∂kf̄t(k
j
t , l

j
t , A

j
t) = θ̂kY j

t and ̂∂lf̄t(k
j
t , l

j
t , A

j
t) = θ̂lY j

t .14 These quantities are

then imputed into (9) - (11), in order to calculate aggregate parameters.

In the simplest case, (13) can be estimated by the OLS method from a single cross-section in

2003. However, the vast literature on estimation of production functions from plant-level data

points out that OLS may suffer from a simultaneity problem. This problem arises if there is a

contemporaneous correlation between the demand for inputs kj
t , ljt and the realization of the

unobservable technology shock contained in εj
t . In such a case, estimates θ̂k and θ̂l, and, hence,

β̂k and β̂l would be biased. There are several approaches to correct for simultaneity between

14Note that in this model, β̂k = θ̂k and β̂l = θ̂l.
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(kj
t , l

j
t ) and εj

t and all of them put additional restrictions on the data. For instance, Olley and

Pakes (1996) propose a method, which uses changes in firm’s investment decision as a proxy for

the productivity shock. However, only firms with non-missing data for 2002 and 2003 on value

added, capital, labor, and investment can be used for estimation. Depending on the country,

this requirement involves an elimination of up to 70% of the companies from our sample of

firms with non missing data on value added, capital, and labor in 2003. Moreover, the above

method may introduce a sample selection bias, if dropping out of the sample between 2002 and

2003 is non-random. Following the same idea, Levinsohn and Petrin (2003) suggest the use

of intermediate inputs instead of the investment variable as a proxy.15 Finally, as described

in Blundell and Bond (2000), the simultaneity problem in estimation of production function

can also be bypassed by a GMM system estimator, though it requires a long time-series of

cross-sections and is therefore not attractive for our analysis.

Being aware of problems mentioned above, we consistently estimate (13) following Olley and

Pakes (1996) in controlling for both simultaneity bias and sample attrition. The method is based

on a two-step procedure and requires following assumptions: (i) labor is the only input which

contemporaneously responds to a technology shock, (ii) capital stock is predetermined and

hence uncorrelated with a contemporary technology shock, (iii) changes in corporate investment

decisions depend on the contemporaneous technology shock, the age and the capital stock of

a firm, (iv) investments are monotonically increasing in the technology shock for a given value

of age and capital. Under these assumptions, the technology shock can be instrumented as a

function of capital, age, and investment. The estimation of this function is carried out by a

series estimator. A detailed description of the method is given in the Appendix B.

Semiparametric model

In order avoid a misspecification of the relationship between y and (k, l, A) we model h̄t semi-

parametrically and include an interaction term, i.e.,

yj
t = θ0 + h̄k

t (kj
t ) + h̄l

t(l
j
t ) + θklkj

t l
j
t + θ′AA

j
t + εj

t , (14)

where h̄k
t and h̄l

t are differentiable in k and l, respectively. We model h̄k
t as a quadratic splines

function with Dk knots dk
1 < dk

2 < · · · < dk
Dk . Defining basis functions bki (k) = max{0, k− dk

i }2,

we obtain h̄k
t (k) = θk

1k + θk
2k

2 +
∑Dk

i=1 θ
k
3,ib

k
i (k). Analogously, we model h̄l

t as h̄l
t(l) = θl

1l +

15They motivate their choice by weaker data requirements and argue that an adjustment in intermediate inputs
is likely to have better properties as an instrument for a technology shock than an adjustment in investment.
Interestingly, the approach of Levinsohn and Petrin (2003) requires even more firms to be eliminated from our
sample due to the very large number of firms with missing data on the use of materials.
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θl
2l

2 +
∑Dl

i=1 θ
l
3,ib

l
i(l). All coefficients in (14) can be estimated by the OLS method. Accordingly,

∂kf̄t(k
j
t , l

j
t , A

j
t) can be estimated as

̂∂kf̄t(k
j
t , l

j
t , A

j
t) =

(
θ̂k
1 + 2θ̂k

2k
j
t + θ̂klljt + 2

Dk∑
i=1

θ̂k
3,i max{0, kj

t − dk
i }
)
Y j

t .

Similarly, one obtains ̂∂lf̄t(k
j
t , l

j
t , A

j
t) = (θ̂l

1 + 2θ̂l
2l

j
t + θ̂klkj

t + 2
∑Dl

i=1 θ̂
l
3,i max{0, ljt − dl

i})Y j
t . The

optimal number of knots and their position is obtained by the minimization of the Mallows’ Cp

criterion (see Mallows, 1973) using the knot deletion method as described by Fan and Gijbels

(1996, p. 42).16

Statistical significance of the aggregate coefficients

Condifence intervals for the aggregate coefficients as well as standard errors of the estimates

are determined by bootstrap. For i.i.d. bootstrap resamples (Y j∗
t , kj∗

t , l
j∗
t , A

j∗
t ) the distribution

of (β̂k
t − βk

t ) is approximated by the conditional distribution of (β̂k∗
t − β̂k

t ) given (Y j
t , k

j
t , l

j
t , A

j
t),

where β̂k∗
t is the estimate of βk

t based on the bootstrap sample. We asses the significance of βk
t

on the basis of the 95% confidence interval, [β̂k
t − q∗0.975, β̂

k
t − q∗0.025], where q∗α is the α-quantile

of the distribution of (β̂k∗
t − β̂k

t ). Analogously, we compute confidence intervals for βl
t, γ

k
t , and

γl
t. Distributional effects are statistically significant, if the condifence interval for γk

t or γl
t does

not include zero. The consistency proof of such a naive bootstrap in the context of average

derivative estimation can be found in Härdle and Hart (1992).

3.3 Empirical results

In the following, we present the results for the estimation of βk, βl, γk, and γl. We report

results based on the OLS estimation of (13) in Table 2. The first two columns of the table

reveal that, as expected, changes in the levels of aggregate capital and labor have a positive

significant effect on growth in all countries. Further, the capital coefficient appears to be higher

16Knot deletion is an iterative procedure. We start with a large number D̄k of initial knots for k, i.e.,
dk
1 < dk

2 < · · · < dk
D̄k , which divide the domain of k into intervals [dk

i , dk
i+1] with approximately equal number

of observations. Similarly, we determine the corresponding D̄l initial knots for l. In step 0, we estimate (14) by
the OLS method and obtain D̄ = D̄k + D̄l estimated spline coefficients θ̂k

3,1, . . . , θ̂
k
3,D̄k , θ̂l

3,1, . . . , θ̂
l
3,D̄l with the

corresponding t-values, t := θ̂/SE(θ̂). At step 1, we delete the knot with the lowest absolute t-value at step 0
and reestimate (14) using D̄ − 1 knots. We repeat this process D̄ times until no knots are left. At each step
r, 0 6 r 6 D̄, we compute the residual sum of squares RRSr =

∑n
j=1(ε̂

j
t )2. Finally, we choose the model with

the lowest value for Mallows’ Cp defined by Cr := RSSr + 3(D̄ + 6 + nA − r)σ̂2
0 , where nA is the number of

attributes in Aj
t and σ̂0 is the estimated standard deviation of εj

t at the 0th model.
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for transition than for developed countries. Overall, the estimated aggregate output elasticities

with respect to aggregate capital and labor, i.e., β̂k and β̂l, are comparable with those obtained

by other studies.17 More interestingly, we find that distributional effects of capital or labor,

associated with γk and γl, are significant at 1% level in all countries. These coefficients are

displayed in the last two columns of Table 2. Further, the distributional effects of capital are

negative and higher (in absolute value) than the corresponding level effects associated with βk.

As for distributional effects of labor, they turn out to be negative and significant at 1% level

for all countries except from Austria, Czech Republic, Portugal and Slovakia. For Portugal

they are positive and significant at the 5% level. Summing up, distributional effects of capital

and labor, which have been overlooked in the growth literature so far, are statistically and

economically significant.

We investigate the robustness of this finding, in that we control for potential simultaneity

and misspecification of the functional form. Table 3 reports the estimation results according to

the Olley and Pakes (1996) method. Overall, the estimates are similar to the OLS estimates but

exhibit higher standard errors. We infer that the simultaneity problem is of less importance in

our sample. In particular, γk is still negative and significant for all countries. Moreover, apart

from Germany and Romania, the distributional effects of capital are again stronger (in absolute

value) than the corresponding level effect. The distributional effects of labor are negative and

significant in 13 out of 20 countries. The results for the semiparametric estimation are reported

in Table 4. We observe that the estimates of βk exceed the corresponding OLS estimates

in most countries. In contrast, β̂l are comparable to the OLS counterparts. At least one of

the distributional effects, i.e., γk or γl, is significant in all countries apart from the Czech

Republic and Slovakia. Interestingly, accounting for a more flexible functional form yields

positive significant distributional effect of capital in Denmark, Italy and Norway. In contrast,

γk is negative significant for eleven countries. Besides, the distributional effects of capital are

lower than the ones resulting from the loglinear model. As opposed to previous models, they

are also lower than the corresponding level effects. As for distributional effects of labor, they

are negative significant in ten countries and positive significant in Portugal. Summing up, the

importance of the distributional effects, which are the main focus of this paper, is robust to

simultaneity and parametric misspecification.

The negative impact of changes in the standard deviation of inputs in most countries sup-

17Recall that under this specification β̂k = θ̂k and β̂l = θ̂l. Hence, we can compare our estimates with those
obtained in studies on production function estimation from the firm-level data, e.g., Olley and Pakes (1996),
Levinsohn and Petrin (2003), and Blundell and Bond (2000).
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ports the intuition outlined in Remark 2. First, under the assumption that a higher degree

of product market competition among firms is associated with more similarity in firm size,

i.e., smaller standard deviations of capital and labor, we find a positive relationship between

competition and economic growth. This positive relation is also found in the literature, for

instance, by Nicoletti and Scarpetta (2003).

Second, changes in the distribution of inputs capture changes in the pattern of economic

interactions between firms. In particular, the literature on economic growth emphasizes the

importance of technology spill-overs among firms in developed economies. A standard assump-

tion in the literature is that technology spill-overs are more likely between firms that are more

similar in terms of the inputs they use in the production process.18 Accordingly, an increase in

the standard deviation of capital or labor corresponds to less intensive technology spill-overs

and, hence, to lower growth rates.

4 Growth Accounting

We exploit the economic signficance of the distributional effects outlined above to refine con-

ventional growth accounting exercises. That is, we explore whether cross-country growth dif-

ferences can be explained by differences in changes in the allocation of capital and labor. Their

explanatory power depends on the cross-country heterogeneity in γk and γl as well as in the

growth rates of the standard deviations of the inputs.

To measure the success of a model in explaining cross-country growth differences we follow

the tradition of variance decomposition. That is, analog to Caselli (2005), we compute the

explanatory power of the changes in the aggregate input levels as

S1 =
var(ĝ1,t)

var(gt)
(15)

where

ĝ1,t = β̂k
t−1(log K̄t − log K̄t−1) + β̂l

t−1(log L̄t − log L̄t−1).

The residual of this indicator, 1 − S1, is the explanatory power of changes in TFP. However,

we know from the Proposition that part of the residual changes should not be associated to

changes in the production technology (TFP), but instead, to changes in the higher moments

of the distribution of capital and labor across firms. Accordingly, our approach which takes

18Theoretical models by Basu and Weil (1998) and Acemoglu and Zilibotti (2000) show that international
technology diffusion is stronger if firms employ more similar capital-labor ratios in production. An empirical
evidence in favor of this result is provided by Keller (2004).
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firm-level heterogeneity in the inputs into account leads to a different growth accounting model:

S2 =
var(ĝ2,t)

var(gt)
, (16)

where

ĝ2,t = β̂k
t−1(log K̄t − log K̄t−1) + β̂l

t−1(log L̄t − log L̄t−1) + γ̂k
t−1

(σk
t − σk

t−1

σk
t−1

)
+ γ̂l

t−1

(σl
t − σl

t−1

σl
t−1

)
.

In addition to the estimated aggregate coefficients growth accounting requires data on the

growth rate of aggregate output, aggregate capital, aggregate labor and the standard deviations

of log capital and log labor. Since the estimation of coefficients relies on data in 2003 (corre-

sponding to t− 1) we focus on growth rates from 2003 to 2004. All of the required information

is available in the AMADEUS data base. However, the computation of aggregate output and

inputs from the cross-section of firms yields implausibly high growth rates in some countries

as is displayed in Table 1. Therefore, we employ information on aggregate growth rates from

the standard cross-country data sets. In particular, we employ Penn World Tables and follow

Caselli (2005) in measuring output as real GDP per capita in PPP and computing the aggregate

capital stock from the corresponding investment series using the perpetual inventory method

and by assuming yearly depreciation rate of 6%. Since aggregate labor in 2004 is not available

in Penn World Tables, we measure aggregate labor as total number of employees from the

Eurostat data base. Obviously, the information on the standard deviations of log capital and

log labor has to be obtained from the firm-level data base. Unfortunately, required aggregate

data for Bosnia and Herzegovina are not available and we are forced to omit this country in

our analysis. The growth rates of the variables employed in the growth accounting exercise are

reported in Table 5.

We derive S1 and S2 based on the three different estimators outlined in the last section.

In particular, we find that the aggregate capital and labor explain 28% of the cross-country

growth differences based on the OLS estimates (S1OLS = 0.28), 29% based on the Olley and

Pakes (1996) method (S1OP = 0.29), and 40% based on the semiparametric model (S1SP =

0.40). These results are consistent with the corresponding findings in the conventional growth

accounting literature. If we additionally take the distributional effects into consideration, we

are able to explain an additional 17%, 13%, and 6% of the growth differences across countries,

respectively (S2OLS = 0.45, S2OP = 0.42, S2SP = 0.46). Recall that our aggregate coefficients

are not estimated by fitting changes in aggregate levels and standard deviations to output

growth rates, but are computed from a structural estimation based on firm-level data. Hence,

in contrast to standard goodness-of-fit measures, the explanatory power could may drop if we
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additionally account for distributional effects. This would be the case if the changes in σk and

σl were negatively correlated with omitted factors that explain GDP-growth. Consequently,

distributional effects of capital and labor across firms help to explain a significant part of

variation in growth across the 19 European countries.

We analyze the robustness of the above result in two different ways. First, we redo the

growth accounting exercise by excluding one country at a time. We repeat this procedure for

all countries. Doing this, we obtain very similar results as in the unrestricted sample. Second,

we extend the sample period to 2002-2004, which virtually does not change our results. In all,

the growth accounting results are robust to variations in the cross-section as well as in the time

series dimension.

Overall, we conclude that accounting for distributional effects of capital and labor helps

explain an additional 6-17% of the cross-country variation in output growth among the 19

European countries. Thus, a growth accounting model which is based on the correct treatment

of firm heterogeneity improves the explanatory power of the production inputs and reduces the

relevance of the residual TFP measure.

5 Conclusion

In this paper, we propose a growth model to examine the effect of distributional changes of

capital and labor on economic growth. We show that the growth rate of an economy depends

not only on changes in the aggregate level of capital and labor, but also on changes in the

allocation of these inputs across firms, which we measure by standard deviations of capital and

labor. Our empirical analysis, based on European firm-level data, reveals that changes in the

allocation of capital and labor have pronounced effects on GDP-growth in almost all of the

20 European countries. This striking result revises the rather unimportant role of capital and

labor distributions in explaining income and growth differences across countries as documented,

for instance, by Caselli (2005). Moreover, it suggests that conventional TFP measures mislead-

ingly capture growth effects stemming from changes in the standard deviations of capital and

labor. In fact, our framework allows to assess the explanatory power of higher moments of the

input distributions and, therefore, reassess the explanatory power of TFP. In this regard, we

refine conventional growth accounting exercises by controlling for cross-country differences in

aggregate input levels and input allocations.

Our empirical results reveal that distributional effects from firm-level heterogeneity in the

inputs are statistically and economically significant in almost all countries. In particular, we
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find that a higher standard deviation in labor and capital have negative effects on output

growth. This finding is consistent with a positive relationship between competition and growth

if more competition is associated with more similarity in firm size and, hence, lower standard

deviations in capital and labor among firms. Our findings are also consistent with the fact

that if firms are getting similar, the technology spill-overs are more intensive, which promotes

economic growth.

Finally, in a growth accounting exercises we show that distributional effects of capital and

labor help explain an additional 6-17% of cross-country growth differences among the 19 Eu-

ropean countries.
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country n2003 Ȳ2003 K̄2003 L̄2003 n2004 V̄2004 K̄2004 L̄2004

Austria 1071 23.766 (112.158) 27.059 (127.479) 18.098 (62.713) 1364 23.883 (113.935) 27.296 (130.298) 14.039 (43.775)

Belgium 10980 12.159 (123.637) 6.708 (32.035) 4.652 (13.922) 11036 12.146 (123.736) 6.720 (31.395) 5.156 (15.683)

Bosnia & H. 2573 0.420 (2.806) 1.358 (9.766) 0.118 (0.353) 2862 0.399 (2.643) 1.215 (7.586) 0.132 (0.380)

Bulgaria 5818 0.311 (2.734) 0.755 (4.083) 0.156 (0.591) 5955 0.308 (2.738) 0.776 (4.029) 0.175 (0.658)

Czech R. 11494 1.258 (14.420) 1.995 (9.655) 0.622 (1.614) 15799 1.270 (13.455) 2.003 (9.833) 0.615 (1.671)

Denmark 20426 2.915 (78.919) 1.359 (7.839) 1.173 (4.930) 21782 2.981 (77.818) 1.370 (7.804) 1.181 (4.778)

Estonia 7666 0.232 (1.799) 0.239 (0.966) 0.097 (0.243) 8083 0.235 (1.811) 0.257 (1.060) 0.112 (0.299)

Finland 32401 1.695 (39.112) 0.795 (5.318) 0.673 (2.848) 30328 1.700 (39.318) 0.730 (4.813) 0.785 (3.215)

France 157141 1.914 (49.716) 0.739 (4.914) 1.154 (4.081) 168079 2.045 (52.413) 0.731 (4.788) 1.214 (4.354)

Germany 6076 71.486 (840.303) 61.754 (273.698) 45.140 (188.750) 7623 68.272 (778.787) 62.813 (296.033) 34.938 (130.982)

Great Britain 41649 18.927 (263.407) 13.435 (88.357) 8.671 (34.791) 37666 19.163 (269.775) 14.751 (98.518) 11.578 (46.104)

Italy 117111 2.385 (86.508) 1.462 (6.618) 1.059 (3.622) 75392 1.976 (24.330) 1.561 (7.379) 1.984 (6.541)

Netherlands 7365 24.505 (329.132) 19.989 (109.564) 16.695 (71.049) 7375 25.337 (347.447) 20.302 (115.710) 17.977 (78.165)

Norway 12051 1.416 (45.918) 1.792 (9.647) 0.540 (1.295) 14299 1.432 (46.209) 1.747 (9.624) 0.679 (1.981)

Poland 10571 2.612 (26.125) 3.338 (13.321) 0.920 (2.119) 11188 2.551 (25.342) 3.823 (14.851) 1.101 (2.535)

Portugal 1451 9.958 (84.895) 19.793 (147.204) 6.114 (25.616) 1487 9.325 (84.477) 21.399 (154.907) 6.003 (25.167)

Romania 49018 0.102 (2.354) 0.102 (0.446) 0.046 (0.164) 66230 0.102 (2.403) 0.120 (0.505) 0.042 (0.141)

Slovakia 2042 1.626 (11.354) 4.157 (30.283) 0.842 (2.302) 2557 2.413 (22.984) 3.231 (23.581) 0.828 (2.489)

Spain 357410 0.956 (34.631) 0.492 (2.250) 0.313 (1.071) 360517 1.003 (37.231) 0.519 (2.374) 0.340 (1.175)

Sweden 123058 1.555 (42.467) 0.731 (5.522) 0.401 (1.776) 125725 1.474 (38.704) 0.735 (5.553) 0.437 (1.906)

Table 1: Descriptive statistics of the AMADEUS data for 20 European countries. All values in

millions of EUR.
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country β̂k β̂l γ̂k γ̂l

Austria 0.151 (0.016) 0.788 (0.025) -0.190 (0.034)* -0.037 (0.054)

Belgium 0.140 (0.006) 0.749 (0.008) -0.293 (0.020)* -0.250 (0.030)*

Bosnia & H. 0.212 (0.011) 0.581 (0.015) -0.351 (0.039)* -0.166 (0.036)*

Bulgaria 0.234 (0.009) 0.639 (0.010) -0.268 (0.027)* -0.190 (0.063)*

Czech R. 0.140 (0.004) 0.811 (0.007) -0.183 (0.011)* 0.035 (0.026)

Denmark 0.116 (0.004) 0.747 (0.006) -0.181 (0.012)* -0.149 (0.024)*

Estonia 0.185 (0.008) 0.715 (0.009) -0.278 (0.019)* -0.210 (0.029)*

Finland 0.147 (0.002) 0.778 (0.003) -0.299 (0.014)* -0.090 (0.011)*

France 0.111 (0.001) 0.854 (0.002) -0.232 (0.005)* -0.038 (0.007)*

Germany 0.136 (0.007) 0.803 (0.011) -0.130 (0.017)* -0.107 (0.037)*

Great Britain 0.132 (0.003) 0.783 (0.004) -0.248 (0.010)* -0.057 (0.016)*

Italy 0.131 (0.002) 0.732 (0.002) -0.179 (0.004)* -0.058 (0.007)*

Netherlands 0.119 (0.007) 0.832 (0.010) -0.171 (0.017)* -0.158 (0.035)*

Norway 0.091 (0.003) 0.804 (0.006) -0.210 (0.011)* -0.123 (0.018)*

Poland 0.152 (0.006) 0.774 (0.009) -0.213 (0.012)* -0.077 (0.021)*

Portugal 0.130 (0.017) 0.818 (0.022) -0.170 (0.032)* 0.132 (0.060)*

Romania 0.252 (0.003) 0.667 (0.004) -0.241 (0.008)* -0.319 (0.010)*

Slovakia 0.156 (0.013) 0.743 (0.020) -0.193 (0.037)* 0.136 (0.086)

Spain 0.115 (0.001) 0.841 (0.001) -0.181 (0.003)* -0.103 (0.006)*

Sweden 0.148 (0.001) 0.766 (0.002) -0.351 (0.008)* -0.089 (0.012)*

Table 2: Estimated values of aggregate coefficients based on OLS production function esti-

mation. Bootstrapped standard errors are given in parentheses. Asterisks denote statistical

significance of distributional effects at the 5% level.
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country β̂k β̂l γ̂k γ̂l

Austria 0.165 (0.067) 0.795 (0.087) -0.240 (0.127)* -0.010 (0.062)

Belgium 0.159 (0.029) 0.715 (0.009) -0.298 (0.057)* -0.184 (0.037)*

Bosnia & H. 0.266 (0.076) 0.509 (0.020) -0.195 (0.86)* -0.260 (0.068)*

Bulgaria 0.286 (0.042) 0.560 (0.017) -0.304 (0.062)* -0.089 (0.072)

Czech R. 0.111 (0.045) 0.752 (0.014) -0.124 (0.051)* 0.029 (0.040)

Denmark 0.121 (0.039) 0.760 (0.008) -0.166 (0.053)* -0.095 (0.017)*

Estonia 0.185 (0.020) 0.685 (0.012) -0.209 (0.025)* -0.080 (0.034)*

Finland 0.156 (0.017) 0.763 (0.005) -0.282 (0.035)* -0.067 (0.013)*

France 0.119 (0.009) 0.829 (0.003) -0.228 (0.018)* -0.031 (0.008)*

Germany 0.117 (0.038) 0.744 (0.016) -0.081 (0.035)* -0.020 (0.044)

Great Britain 0.155 (0.035) 0.782 (0.005) -0.285 (0.067)* -0.038 (0.019)*

Italy 0.163 (0.017) 0.705 (0.003) -0.173 (0.018)* -0.061 (0.007)*

Netherlands 0.180 (0.031) 0.758 (0.013) -0.213 (0.041)* -0.051 (0.034)

Norway 0.064 (0.007) 0.835 (0.008) -0.109 (0.012)* -0.059 (0.006)*

Poland 0.123 (0.046) 0.741 (0.011) -0.164 (0.065)* -0.091 (0.032)*

Portugal 0.126 (0.051) 0.832 (0.041) -0.236 (0.101)* 0.007 (0.062)

Romania 0.147 (0.044) 0.629 (0.006) -0.101 (0.030)* -0.252 (0.014)*

Slovakia 0.158 (0.053) 0.682 (0.028) -0.186 (0.072)* 0.234 (0.135)

Spain 0.121 (0.010) 0.817 (0.002) -0.173 (0.015)* -0.063 (0.007)*

Sweden 0.154 (0.007) 0.759 (0.002) -0.353 (0.018)* -0.070 (0.012)*

Table 3: Estimated values of aggregate coefficients based on the Olley and Pakes (1996) method.

Bootstrapped standard errors are given in parentheses. Asterisks denote statistical significance

of distributional effects at the 5% level.
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country β̂k β̂l γ̂k γ̂l

Austria 0.171 (0.030) 0.779 (0.035) -0.095 (0.045)* -0.212 (0.061)*

Belgium 0.142 (0.011) 0.813 (0.014) -0.097 (0.018)* -0.231 (0.041)*

Bosnia & H. 0.240 (0.047) 0.729 (0.040) -0.340 (0.057)* 0.109 (0.077)

Bulgaria 0.295 (0.036) 0.725 (0.041) -0.095 (0.053)* -0.050 (0.087)

Czech R. 0.257 (0.025) 0.793 (0.020) -0.024 (0.039) 0.067 (0.038)

Denmark 0.174 (0.015) 0.796 (0.013) 0.038 (0.022)* -0.220 (0.034)*

Estonia 0.187 (0.016) 0.775 (0.020) -0.119 (0.025)* -0.109 (0.043)

Finland 0.160 (0.010) 0.833 (0.010) -0.095 (0.017)* -0.090 (0.021)*

France 0.119 (0.003) 0.870 (0.004) -0.059 (0.006)* -0.024 (0.011)*

Germany 0.178 (0.013) 0.815 (0.016) -0.006 (0.020) -0.100 (0.044)*

Great Britain 0.211 (0.008) 0.797 (0.009) -0.066 (0.012)* -0.125 (0.021)*

Italy 0.153 (0.007) 0.820 (0.006) -0.027 (0.021) -0.063 (0.013)*

Netherlands 0.170 (0.019) 0.829 (0.022) -0.002 (0.038) -0.115 (0.050)*

Norway 0.141 (0.010) 0.856 (0.011) 0.060 (0.016)* -0.050 (0.027)

Poland 0.156 (0.017) 0.856 (0.017) -0.130 (0.031)* -0.024 (0.033)

Portugal 0.231 (0.058) 0.805 (0.074) -0.045 (0.037) 0.149 (0.084)*

Romania 0.209 (0.009) 0.693 (0.008) -0.264 (0.018)* -0.206 (0.014)*

Slovakia 0.309 (0.060) 0.730 (0.053) -0.082 (0.089) 0.141 (0.103)

Spain 0.164 (0.004) 0.831 (0.003) -0.001 (0.006) -0.142 (0.009)*

Sweden 0.173 (0.004) 0.820 (0.005) -0.095 (0.008)* -0.047 (0.014)*

Table 4: Estimated values of aggregate coefficients based on the semiparametric specification.

Bootstrapped standard errors are given in parentheses. Asterisks denote statistical significance

of distributional effects at the 5% level.
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country g04 log K̄04

K̄03
log L̄04

L̄03

σk
04−σk

03

σk
03

σl
04−σl

03

σl
03

Austria 2.14 -1.31 0.57 -2.46 -1.89

Belgium 2.46 3.52 0.65 0.61 -0.76

Bosnia & H. - - - -5.14 -6.20

Bulgaria 5.02 10.02 2.59 -0.62 -1.38

Czech R. 3.10 4.73 -0.28 -0.43 2.33

Denmark 1.71 2.22 0.00 0.79 -1.00

Estonia 7.73 -0.54 0.25 1.24 0.48

Finland 3.47 2.75 0.41 -3.33 -0.22

France 1.97 5.03 0.05 0.46 0.38

Germany 1.66 1.13 0.42 1.22 0.27

Great Britain 2.75 1.93 1.00 1.52 0.56

Italy 1.09 0.28 0.37 3.78 10.14

Netherlands 1.23 2.25 -1.42 -0.21 1.79

Norway 2.20 9.26 0.47 0.83 1.39

Poland 5.31 6.36 1.31 -0.28 0.66

Portugal 0.38 1.26 0.09 0.22 3.50

Romania 8.68 1.64 0.39 -5.42 1.86

Slovakia 3.50 9.25 0.27 -10.04 -4.29

Spain 1.61 1.95 3.42 0.06 -0.92

Sweden 3.58 -1.27 -0.57 1.61 1.04

Table 5: Growth rates in 2004 (in %) used in the growth accounting exercise.
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Figure 3: Age distribution for small firms
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Figure 4: Age distribution for medium firms
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Figure 5: Age distribution for large firms
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period 1998 1999 2000 2001 2002 2003 2004 2005

1997 0.277 0.004 0.012 0 0 0 0 0
1998 0.940 0.235 0.021 0.001 0 0 0
1999 0.300 0.144 0.004 0.002 0 0
2000 0.154 0.033 0.046 0.014 0
2001 0.464 0.310 0.282 0
2002 0.702 0.648 0.003
2003 0.942 0.049
2004 0.452

Table 6: P-values of the Li (1996) test of the local time invariance of the component-wise standardized

distribution of log capital and log labor for United Kingdom. P-values smaller than 0.05 indicate that

changes in the distribution were statistically significant.

t 1998 1999 2000 2001 2002 2003 2004 2005

1997 0.789 0.206 0.443 0.237 0.061 0.103 0.043 0.525
1998 0.997 0.590 0.655 0.742 0.879 0.484 0.506
1999 0.903 0.173 0.970 0.995 0.661 0.619
2000 0.963 0.783 0.956 0.495 0.912
2001 0.427 0.493 0.104 0.835
2002 0.780 0.950 0.729
2003 0.982 0.440
2004 0.589

Table 7: P-values of the Kolmogorov-Smirnov test of the local time invariance of the conditional

distribution of age given capital and labor are equal to their 25th quantile in the population. P-values

smaller than 0.05 indicate that changes in the distribution were statistically significant.

t 1998 1999 2000 2001 2002 2003 2004 2005

1997 0.945 0.200 0.711 0.232 0.508 0.806 0.172 0.075
1998 0.445 0.575 0.149 0.269 0.345 0.121 0.043
1999 0.454 0.005 0.619 0.200 0.283 0.540
2000 0.233 0.296 0.664 0.255 0.238
2001 0.131 0.466 0.112 0.046
2002 0.925 0.724 0.404
2003 0.714 0.439
2004 0.977

Table 8: P-values of the Kolmogorov-Smirnov test of the local time invariance of the conditional

distribution of age given capital and labor are equal to their 50th quantile in the population. P-values

smaller than 0.05 indicate that changes in the distribution were statistically significant.
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t 1998 1999 2000 2001 2002 2003 2004 2005

1997 0.999 0.923 0.684 0.385 0.282 0.091 0.109 0.782
1998 0.985 0.682 0.314 0.194 0.051 0.072 0.632
1999 0.986 0.259 0.126 0.029 0.106 0.877
2000 0.686 0.315 0.087 0.254 0.997
2001 0.801 0.651 0.313 0.754
2002 0.981 0.973 0.944
2003 0.946 0.519
2004 0.816

Table 9: P-values of the Kolmogorov-Smirnov test of the local time invariance of the conditional

distribution of age given capital and labor are equal to their 75th quantile in the population. P-values

smaller than 0.05 indicate that changes in the distribution were statistically significant.
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Appendix B

Estimation of production functions under simultaneity and sample selection

In what follows, we present the estimation procedure for production functions in the presence

of simultaneity and sample selection problems. Therefore, we consider the model (13) and

decompose the error term εj
t into two elements, i.e., εj

t = ωj
t + εjt , where ωj

t is the productivity

shock and εjt is the true error term. Further, we distinguish between firm j’s age aj
t and the

remaining R′ = R− 1 attributes A′j
t . Hence, we can write

Y j
t = α0 + αk

1k
j
t + αk

2(k
j
t )

2 + αl
1l

j
t + αl

2(l
j
t )

2 + αa
1a

j
t + αa

2(a
j
t )

2 +
R′∑

r=1

αA′
r A′j

r,t + ωj
t + εj

t , (17)

The simultaneity problem arises if ωj
t is correlated with at least one of the regressors. In

the recent literature on the estimation of production functions, one generally assumes that the

demand for labor is the only input which is potentially correlated with ωj
t as capital stocks

are assumed to be predetermined. As a remedy, Olley and Pakes (1996) propose a three-stage

estimation procedure for (17) in which they advocate the use of a firm’s log investment ijt to

identify the productivity shock. In doing so, they define the investment function ι such that

ijt = ιt(ω
j
t , k

j
t , a

j
t). If investments are monotonically increasing in the technology shock for a

given value of age and capital, this allows to express the unobservable technology variable as

a function of contemporaneous investments, capital and age. Hence, they define the inverse

investment function by ht so that ωj
t = ht(i

j
t , k

j
t , a

j
t). Thus, one can rewrite (17) as

Y j
t = α0 + αk

1k
j
t + αk

2(k
j
t )

2 + αl
1l

j
t + αl

2(l
j
t )

2 + αa
1a

j
t + αa

2(a
j
t )

2 +
R′∑

r=1

αA′
r A′j

r,t + ht(i
j
t , k

j
t , a

j
t ) + εj

t . (18)

Further, we define

φt(i
j
t , k

j
t , a

j
t ) := α0 + αk

1k
j
t + αk

2(k
j
t )

2 + αa
1a

j
t + αa

2(a
j
t )

2 + ht(i
j
t , k

j
t , a

j
t )

and approximate this term by a third order polynomial series in k, i, and a.19 Consequently,

we can write

Y j
t = αl

1l
j
t + αl

2(l
j
t )

2 +
R′∑

r=1

αA′

r A
′j
r,t + φt(i

j
t , k

j
t , a

j
t) + εjt . (19)

19In particular, we define

φt(i, k, a) = θ0 +
3∑

p=1

(θi
pi

p + θk
pkp + θa

pap + θik
p (ik)p + θia

p (ia)p + θka
p (ka)p + θika

p (ika)p).
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Since we control for contemporaneous movements in productivity by the inverse investment

function, OLS estimation of (19) yields consistent estimates of αl
1, α

l
2, and αA′

r , r = 1, . . . , R′ .

In a second stage, in order to correct for a possible sample selection bias, we estimate the

survival probability πt−1 from period t − 1 to t. This estimation is carried out in a probit

regression of the survival indicator on a polynomial series in ijt−1, k
j
t−1, and aj

t−1.

Finally, a third stage is necessary to identify αk
1, αk

2, αa
1 and αa

2. Therefore, we assume that

productivity follows a first order Markov chain, i.e, ωj
t = E(ωj

t |ω
j
t−1) + ξj

t , where ξj
t denotes

the innovation in the productivity and is assumed to be uncorrelated with capital in period t.

Defining vt as output net of the contributions of labor and the attributes A′j
t and substituting

πj
t−1 and ht−1(i

j
t−1, k

j
t−1, a

j
t−1) into a function

g(πj
t−1, φ

j
t−1 − αk

1k
j
t−1 + αk

2(kj
t−1)

2 + αa
1a

j
t−1 + αa

2(aj
t−1)

2),

we can write

vj
t = α0 + αk

1k
j
t + αk

2(kj
t )2 + αa

1a
j
t + αa

2(aj
t)

2 + g(πj
t−1, ·) + ξj

t + εjt . (20)

Note that we restrict capital and lagged capital, as well as age and lagged age to have the same

coefficients, respectively. Consequently, as these coefficients enter the regression equation twice

we estimate them efficiently and consistently by applying to (20) a non-linear least squares

procedure.

Appendix C

Derivation of the aggregate relation in terms of log K̄ and log L̄

Let xj
t = (kj

t , l
j
t )

′ denote the observable firm-specific explanatory variables with the corre-

sponding mean vector x̄t. Further, Σt =

(
(σk

t )2 σkl
t

σkl
t (σl

t)
2

)
denotes the covariance matrix of

xj
t across Jt. According to Hildenbrand and Kneip (2005) the growth rate gt of the aggregate

response variable is given by

gt = β′
t−1(x̄t − x̄t−1) + tr[∆t−1(Σ

1/2
t Σ

−1/2
t−1 − I)] + other effects, (21)

where I is the identity matrix, βt−1 = (βk
t−1, β

l
t−1)

′ is a vector and ∆t−1 =

(
δk
t−1 δkl

t−1

δkl
t−1 δl

t−1

)
is a

matrix of coefficients. Under coordinate-wise standardization (in Assumption 1) Σt is replaced
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by Σ̃t =

(
(σk

t )2 0

0 (σl
t)

2

)
and the first two rhs terms in (21) simplify to

βk
t−1(k̄t − k̄t−1) + βl

t−1(l̄t − l̄t−1) + δk
t−1(

σk
t − σk

t−1

σk
t−1

) + δl
t−1(

σl
t − σl

t−1

σl
t−1

), (22)

where

δk
t−1 =

1

Ȳt−1

∫
(k − k̄t−1)∂kf̄t−1(k, l, A) dGt−1,klA

and

δl
t−1 =

1

Ȳt−1

∫
(l − l̄t−1)∂lf̄t−1(k, l, A) dGt−1,klA.

For the sake of comparability with conventional growth models, we are interested in a rela-

tionship like (21) but in terms of changes in aggregate levels K̄ and L̄ rather than in terms

of aggregate log levels k̄ and l̄. More specifically, we want to arrive at a relationship for the

growth rate containing

βk
t−1(log K̄t − log K̄t−1) + βl

t−1(log L̄t − log L̄t−1).

We start20 with the definition of log K̄t.

log K̄t = log
[ ∫

KdGt,K

]
= log

[ ∫
exp(k)dGt,k

]
. (23)

For two periods t and t− 1 Assumption 1 (Structural stability of Gkl) implies

Gt−1,k

( σk
t

σk
t−1

(k − k̄t−1) + k̄t

)
= Gt,k(k).

Hence, we can rewrite (23) by

log K̄t = log
[ ∫

exp
( σk

t

σk
t−1

(k − k̄t−1) + k̄t

)
dGt−1,k

]
= k̄t + log

[ ∫
exp

( σk
t

σk
t−1

(k − k̄t−1)
)
dGt−1,l

]
Now, we define a function q from R+ to R such that

q(σk) := log
[ ∫

exp
( σk

σk
t−1

(k − k̄t−1)
)
dGt−1,k

]
.

20The derivation for log L̄t can be carried out analogously.
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By the definition of q we have q(σk
t ) = log K̄t− k̄t and simple algebra yields q(σk

t−1) = log K̄t−1−
k̄t−1. From these properties of q it follows that

k̄t − k̄t−1 = log K̄t − log K̄t−1 − [q(σk
t ) − q(σk

t−1)].

Further, by the first order Taylor approximation of q(σk) at σk
t−1 we obtain

q(σk
t ) ≈ q(σk

t−1) + ∂σkq(σk)
∣∣
σk=σk

t−1
· (σk

t − σk
t−1)

= q(σk
t−1) +

1

σk
t−1K̄t−1

∫
(k − k̄t−1) exp(k)dGt−1,k · (σk

t − σk
t−1).

Consequently,

βk
t−1(k̄t − k̄t−1) = βk

t−1(log K̄t − log K̄t−1) −
βk

t−1

K̄t−1

∫
(k − k̄t−1) exp(k)dGt−1,k ·

(σk
t − σk

t−1

σk
t−1

)
.

Doing analogous derivations for log L̄t, we obtain

gt = βk
t−1(log K̄t − log K̄t−1) + βl

t−1(log L̄t − log L̄t−1)

+ γk
t−1

(σk
t − σk

t−1

σk
t−1

)
+ γl

t−1

(σl
t − σl

t−1

σl
t−1

)
+ other effects,

where

γk
t−1 = δk

t−1 −
βk

t−1

K̄t−1

∫
(k − k̄t−1) exp(k)dGt−1,k

and

γl
t−1 = δl

t−1 −
βl

t−1

L̄t−1

∫
(l − l̄t−1) exp(l)dGt−1,l.
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16 (3), 232-244.

Nicoletti, G. and S. Scarpetta (2003) “Regulation, productivity and growth: OECD evi-

dence”, Economic Policy, 18, 9-72.

Olley, G. and A. Pakes (1996) “The Dynamics of Productivity in the Telecomunications

Equipment Industry”, Econometrica 64, 1263-1279.
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