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1 Introduction

Rising wage inequality has been a key feature of the U.S. labor market since the late

1970s. This phenomenon, both in the United States and worldwide, has received

much attention in the literature. One possible explanation given for this rise comes

from the capital-skill complementarity (CSC) hypothesis. The hypothesis states that

physical capital and skilled labor are more complementary than unskilled labor and

physical capital. Assuming the hypothesis is true, an increase in physical capital,

ceteris paribus, will increase the demand for skilled labor (and thus wages for skilled

laborers). Capital-deepening seen across many economies in recent years combined

with CSC could be one such explanation for rising wage inequality. Thus, if significant

increases in physical capital have been made and CSC is shown to hold for a particular

economy, policymakers could use this information to possibly find ways to decrease

inequality.

Griliches (1969) finds empirical evidence that physical capital and skilled labor

are less substitutable than physical capital and unskilled labor and concludes that

the CSC hypothesis holds using a data set of U.S. manufacturers. Since Griliches

(1969), the CSC hypothesis has been empirically studied in great detail. While some

authors argue on the specification of the model, others argue on the type of data which

should be studied. Fallon and Layard (1975), and others, study the CSC hypothesis

on an international scale. Specifically, they piece together data from 22 developed

and developing countries for the year 1963. They find mild evidence in favor of the

CSC hypothesis. Duffy, Papageorgiou, and Perez-Sebastian (2004), hereafter DPP,

extend the work of Fallon and Layard (1975) to a data set of 73 countries over a

25 year period (1965-1990). They use a two-level constant elasticity of substitution

production function specification and use nonlinear estimation methods which allow

them to relax the assumption of perfectly competitive markets. Further, they are able

to categorize skilled (and thus unskilled) labor into five categories (or thresholds)1

which allow them to find the greatest support for CSC when the threshold for skilled

laborers is defined as those who have attained some secondary education, those who

have completed primary education or as those who gained some primary education.

1These thresholds will be described in greater detail in Section 3.
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Part of their purpose for looking at an international panel was to find evidence of

CSC over long periods of time and across countries at different stages of development.

This strategy was partly influenced by Goldin and Katz (1998) who note that physical

capital and skilled labor have not always been viewed as relative complements. In

particular, they suggest that transitions between production processes change the

relative demand for skill, thus different economies at different times may or may not

possess CSC.

Therefore it seems desirable to view the elasticities of substitution for each country

at each time period. Simply blanketing all countries under one estimate could prove

to be detrimental. For example, suppose a researcher found that CSC exists in a

panel of countries. Then if countries take that information as given, it may affect

their policy. If CSC holds true for that economy, it could increase spending on

education to potentially reduce the impact of advancing technology on inequality.

However, if CSC does not exist, those resources spent on education may have been

better allocated.

Although observation specific estimates seem logical, the aforementioned papers

simply give a single estimate for each elasticity.2 In general, an increasingly popular

method to obtain observation specific estimates is to use nonparametric kernel meth-

ods. In addition to obtaining observation specific estimates, nonparametric methods

have the luxury of not having to assume a specific functional form for the technology.

This technique is extremely beneficial here because as DPP (pp. 331) note, “there

is no consensus yet on the appropriate functional form to use to capture capital-skill

complementarity.” Thus, if one chooses a specific technology, and that assumption is

incorrect, estimation will most likely lead to biased estimates.

This paper will use nonparametric methods to study the CSC hypothesis. This

approach allows for at least three contributions to the literature. (1) The nonparamet-

ric technique allows the model to be solved using a single-level production function.

(2) It decreases the number of assumptions of the model, including the choice of

functional form for the technology and (3) it allows for observation specific estimates

of elasticities of substitution. These contributions allow for estimates of elasticities
2There is, however, some work being done with translog cost functions (which require price data)

that allow for observation specific estimates, e.g. see Bergström and Panas (1992) and Ruiz-Arranz
(2002).
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of substitution which sidestep the problem of specification choice which arises in the

two-level production function approach. Further, no assumptions on the paramet-

ric form of the technology will have to be assumed, nor will it require additional

restrictive assumptions such as assuming neutral technological growth.

The main finding of the paper shows weak support for the CSC hypothesis. As

in DPP, the elasticities of substiution between physical capital and skilled labor are

generally smaller than the elasticities of substitution between physical capital and

unskilled labor, but the difference is often insignificant. Also, as hypothesized by

Goldin and Katz (1998), it is shown that the degree of substitutability varies amongst

countries, across groups of countries and across time.

The remainder of the paper is organized as follows: Section 2 describes the model,

gives a brief history of elasticity of substitution measures, and describes the estimation

procedure as well as a nonparametric testing procedure. The third section gives the

data while the fourth describes the results. Finally, the fifth section concludes.

2 Methodology

2.1 Model

Consider the simple aggregate production model of the form

y = f(K,S,N), (1)

where the function f transforms inputs into aggregate output (y). K represents phys-

ical capital stock, and S and N represent skilled and unskilled labor, respectively.

The CSC hypothesis states that capital and skilled labor are more complementary

than capital and unskilled labor. Formally, denoting σql as the elasticity of substitu-

tion between inputs q and l, CSC is said to hold if σKS < σKN . That is, K and S

are less substitutable (or more complementary) than K and N .

2.2 Elasticity of Substitution Measures

The elasticity of substitution measure, first developed by Hicks (1932), measures

the percentage change in factor proportions due to a change in the marginal rate

of technical substitution in a two-input world. It is, effectively, a measure of the
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curvature of an isoquant. Although this result is intuitive, complication occurs when

one allows for more than two inputs. Several measures have since been created in

order to combat this complication. Unfortunately, there is no one correct answer.

One such measure, which has fallen out of fashion in the literature, is the direct

elasticity of substitution (DES) defined by Allen and Hicks (1934). The measure,

which defines the elasticity of substitution between any two inputs as

σDql =
xqfq + xlfl

xqxl

Hql

|H| , (2)

where

H =

⎡⎢⎢⎢⎣
0 f1 · · · fP
f1 f11 · · · f1P
...

...
fP fP1 · · · fPP

⎤⎥⎥⎥⎦ ,
Hql is the cofactor of the element fql in H, and fq, fqq, and fql represent the first

partial, second partial, and cross-partial derivatives of the production function re-

spectively, can be interpreted as ∂ log (xq/xl) /∂ log (fl/fq) for constant output and

other input quantities. The downfall of this measure is that it is identical to the

two-input case, effectively assuming that the other factors in the production function

are fixed and can be ignored. It is only theoretically plausible to use an aggregate

production like this if in fact all factors are being competitively allocated. If one

factor is being held constant, then an aggregate production function no longer exists.

The most popular measure in the literature is the Allen-Uzawa (or the partial)

elasticity of substitution (AES). This method, first suggested by Allen and Hicks

(1934) and further studied by Allen (1938) and Uzawa (1962), has become a staple

in the applied literature. It was designed to combat the downfall of the DES measure

(by attempting to examine changes in other inputs) and is formally defined as

σAql =

P
p xpfp

xqxl

Hql

|H| . (3)

Although the measure is continually used, it has met sharp criticism. Blackorby

and Russell (1989) show that the Allen-Uzawa measure fails to preserve the relevant

properties of the original Hicksian notion (for the multi-input case). They further

state (pp. 883) that “as a quantitative measure, it has no meaning; as a qualitative

measure, it adds no information to that contained in the (constant output) cross-price
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elasticity. In short, the AES is (incrementally) completely uninformative.” Perhaps

the only redeaming feature of the AES is that it preserves the sign of the compensated

derivative.

In its place they suggest an alternative elasticity of subsitution measure originally

published in Japanese by Morishima (1967) and independently discovered by Black-

orby and Russell (1975, 1981). This measure, which Klump and de La Grandville

(2000) term3 the Morishima-Blackorby-Russell elasticity of substitution (MES), pre-

serves the salient characteristics of the original Hicksian concept, which are lacking

in the Allen-Uzawa measure. This measure is usually employed when estimating cost

functions (e.g., see Thompson and Taylor 1995), but is also used when estimating

production functions (e.g., see Hoff 2004) and has a well-known relationship to the

partial elasticity of substitution:

σMql =
fl
xq

Hql

|H| −
fl
xl

Hql

|H| (4)

=
flxl
fqxq

¡
σAql − σAll

¢
.

A detailed examination of this formula shows two important facts. First, a pair of

goods can be complements in terms of the AES, but substitutes according to the MES.

On the other hand, if two goods are substitutes according to the AES, they are always

substitutes according to the MES. Thus, either the MES has a bias towards treating

inputs as substitutes or the AES has a bias towards treating them as complements.

However, this paradoxical result should not be too disturbing since it simply reflects

the fluidity of the concept of the elasticity of substitution in a multi-input world.

Second, the MES is asymmetric. Although some view this as an unusual property,

Blackorby and Russell (1981, 1989) argue that this should be natural for the multi-

input case.4

3This under-cited paper not only suggests the name for the elasticity of substitution measure, it
also proposes that empirical growth research in this area be based on the MES.

4When examining the asymmetric property for this data set, it is found that, in general, the
absolute value of σKS is less than σSK and at the same time σKN is less than σNK . What these
inequalities (literally) say is that the capital-labor ratio (skilled or unskilled) is more sensitive to
changes in the rental rate on capital than to changes in the wage rate (which change the factor
price ratio in different directions). Given that the main conclusions of the paper do not change with
either measure, to conserve space, the paper chooses to focus on the estimates of σKS and σKN .
The results using σSK and σNK are available in Appendix A. For a more detailed discussion on
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2.3 Nonparametric Estimation of Production Functions

Nonparametric estimation of production functions is not new, but the literature is

somewhat scattered. Early attempts to estimate production functions using kernel

methods can be found in, for example, Vinod and Ullah (1988) and Kneip and Simar

(1996). The term nonparametric estimation encompasses a broad range of methods

for which to estimate production functions and includes other approaches such as

Allon et al. (2005) who use entropy measures, Chavas and Cox (1988) who use

Data Envelopment Analysis, Epple et al. (2006, 2007) who use series estimation,

Kumbhakar et al. (2007) who use local-maximum likelihood estimation and Lewbel

and Linton (2007) who use nonparametric matching estimators.

The choice of which methodology to choose depends on the problem at hand and

the data in question. This paper uses Li-Racine Generalized Kernel Estimation (see

Li and Racine 2004, and Racine and Li 2004). This methodology is not new to the

estimation of production functions either. For example, Henderson and Kumbhakar

(2006) use generalized kernel estimation to estimate the U.S. aggregate production

function and examine the public capital productivity puzzle. The benefit of this

procedure is that it smooths both continuous and categorical regressors. Besides

the obvious benefit of being able to smooth categorical variables, and not having to

automatically resort to a semiparametric procedure, the rate of convergence of the

estimators depend only on the number of continuous regressors. This is especially

important because the data set being studied is relatively small.

2.3.1 Generalized Kernel Estimation

Here, generalized kernel estimation is used to estimate the (single level) production

function (1), which may be written as

yi = m(xi) + ui, i = 1, 2, ..., NT. (5)

m is the unknown smooth production function with argument xi = (xci , x
u
i , x

o
i ), x

c
i =

(Ki, Si, Ni) is a vector of continuous inputs, xui is a vector of regressors that assume

elasticity of substitution measures, see e.g., Allen (1938), Allen and Hicks (1934), Blackorby and
Russell (1975, 1981, 1989), Chambers (1988), Hicks (1932, 1946), and McFadden (1963).
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unordered discrete values (in this case a single variable for geographic region5), xoi is a

vector of regressors that assume ordered discrete values (in this case a single variable

for time), u is the additive error, N is the number of countries, and T is the number

of time periods (N = 73, T = 6). Taking a second-order Taylor expansion of (5) with

respect to xj yields

yi ≈ m(xj) + (x
c
i − xcj)β(xj) + 0.5(x

c
i − xcj)

0(xci − xcj)γ(xj) + ui, (6)

where β(x) (≡ 5m(x)) is the partial derivative of m(x) with respect to xc and γ(x)

(≡ 52m(x)) is the Hessian.

The local-quadratic least-squares6 estimator of δ(x) ≡ (m(x), β(x), γ(x))0 is given
by bδ(x) = ³bm(x), bβ(x),bγ(x)´0 = (X 0K(x)K)−1X 0K(x)y, (7)

whereX =
¡
1, (xci − xcj), (x

c
i − xcj)

0(xci − xcj)
¢
andK(x) is aNT×NT diagonal matrix

of kernel (weight) functions commonly used for mixed data (Li and Racine 2006).7

2.3.2 Bandwidth Selection

Estimation of the bandwidths is typically the most salient factor when perform-

ing nonparametric estimation. Although there exist many selection methods, this

study utilizes Hurvich et al.’s (1998) Expected Kullback Leibler (AICc) criteria. This

method — which chooses smoothing parameters using an improved version of a crite-

rion based on the Akaike Information Criteria — has been shown to perform well in

small samples and avoids the tendency to undersmooth as often happens under other

5Maasoumi, Racine and Stengos (2007) use generalized kernel estimation in their study of a
nonparametric growth regression, but choose to only include OECD status. Following the lead of
Temple (1998), in addition to OECD status, the regional categorical variable includes categories for
Africa, the Caribbean, Latin American, the Middle East, and Asia. The results of the exercise were
also examined solely using OECD status and although these coefficients have more variation, the
main conclusions of the paper do not change. The results are available upon request.

6It should be noted that the second-order Taylor expansion and thus estimation of the model by
local-quadratic least-squares is not necessary here. For instance, estimation of (5) can be performed
using local-constant least-squares (which estimates only the unknown function) and then separately
obtaining the derivatives of m(·) (using methods outlined in, e.g. Pagan and Ullah 1999, Rilstone
and Ullah 1989, Ullah 1988a,b, and Vinod and Ullah 1988). For further information on the benefits
and relationships between local constant, linear and quadratic least-squares, see Fan and Gijbels
(1996).

7See Hall, Li and Racine (2007), Hall, Racine and Li (2004), Li and Racine (2004, 2006) and
Racine and Li (2004) for further details.
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approaches such as Least-Squares Cross-Validation. Specifically, the bandwidths are

chosen to minimize

AICc = log
¡bσ2¢+ 1 + tr(H)/N

1− [tr(H) + 2] /N (8)

where

bσ2 =
1

N

NX
j=1

(yj − bm(xj))2
=

µ
1

N

¶
y0(I −H)0(I −H)y, (9)

and bm(xj) = Hyj.

A major benefit of nonparametric type estimators is that they give a separate

estimate for each observation. This allows one to construct observation specific esti-

mates of (2), (3), and (4), where observation specific values of fq = ∂m
∂xq

, fqq =
∂2m
∂x2q

,

and fql =
∂2m

∂xq∂xl
are retrieved from bβ(x) and bγ(x). This result allows one to track

elasticity of substitution estimates across countries and over time.

In addition to giving observation specific estimates and relaxing the functional

form,8 the nonparametric model gives several other important benefits over the para-

metric models. First, the model does not require the elasticity of substitution between

N and S to be the same as that between K and N (equation 1 in DPP) or K and S

(equation 2 in DPP).9 Second, the model does not require Hicks-neutral technologi-

cal growth (equations 5 and 6 in DPP). Finally, it allows for time effects which are

allowed to vary across countries (embodied technical change).

8It should also be noted here that the translog model allows for observation specific estimates
and a partial relaxation of the functional form. However, there are a few downfalls to the second-
order taylor approximation of the constant elasticity of substitution production function. First, as
compared to the nonparametric model, it is more restrictive. Second, some authors have found that
the second-order taylor expansion sometimes gives poor results (see Kmenta 1967, and Thursby
and Lovell 1978 for further details). Results for this paper were also estimated using the translog
production function. It was found that these results were less intuitive than the nonparametric
model, but are available from the author upon request.

9In the estimation of the model it is found that the elasticities of substitution between N and S,
and K and N or K and S are not equal. The results for elasticities of subsitution between N and
S are not reported in the tables, but are available from the author upon request.
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2.3.3 Identification

In theory, the relationship between capital-skill complementarity and the distribution

of income relies on a number of assumptions. Some of them are general to much of the

production theory literature such as returns to scale. Some are special to the capital-

skill complementarity literature. With nonparametric estimation it is not entirely

clear to what extent the elasticities obtained are able to confirm or refute theoretical

predictions.

Perhaps more important than refuting/confirming theories is the issue of identifi-

cation. Diamond et al. (1978) show for what conditions the elasticities of substitution

and patterns of technological change can be identified and for what conditions they

cannot be identified. For example, the Cobb-Douglas production function implicitly

assumes that the elasticity of subsitution between inputs is equal to zero. Hence, non-

parametric identification is not guaranteed because the nonparametric model nests

the Cobb-Douglas model. In that sense, the nonparametric model is not fully identi-

fied.

This stems the question, what should one do from here? One tedious approach

would be to reject any parametric model for which the desired estimates are not

identified. For example, using the Hsiao, Li and Racine (2007) test, the Cobb-Douglas

model is rejected at the 1% level for each data set run in this paper. However, this

approach, of course, is infeasible in practice. A likely better solution would be to

develop tests for the conditions outlined in Diamond et al. (1978). If it is found

that the conditions do not hold, then procedures may be developed to estimate the

nonparametric model imposing these assumptions (for example, neutral technological

change). There is a small literature on testing for structure (e.g., see Bowman,

Jones and Gijbels, 1998 and Hall and Van Keilgom, 2005) and imposing strucutre in

nonparametric kernel estimators (e.g., see Hall and Huang, 2001 and Hall, Huang,

Gifford and Gijbels, 2002). This possibility suggests a non-trivial future research

agenda

2.4 Stochastic Dominance

Nonparametric estimation as described in equation (7) allows one to generate unique

elasticity of substitution estimates for each observation. To examine the empirical
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comparisons, this paper uses a stochastic dominance (SD) approach. The comparison

of the elasticities of substitution between physical capital, and skilled and unskilled

labor on a particular index is highly subjective; different indices may yield different

substantive conclusions. In contrast, finding a SD relation provides uniform ranking

regarding the elasticities of substitution and offers robust inference.

To proceed, let σKNi be the actual elasticity of substitution between physical cap-

ital and unskilled labor unique to an individual country during a specific year. σKSi

is defined similarly. In practice, the actual elasticities of substitution are unknown,

but the nonparametric regression allows us to construct an estimate of each of these.

Define {bσKN}NT
i=1 as a vector of NT estimates of σKN and {bσKS}NT

i=1 as an analo-

gous vector of estimates of σKS. Let G(σKN) and F (σKS) represent the cumulative

distribution functions of σKN and σKS, respectively.

Consider the null hypotheses of interest as

Equality of Distributions :

G(σKN) = F (σKS) ∀σKN ∪ σKS ∈ Ω. (10a)

First Order Stochastic Dominance : G dominates F (CSC) if

G(σKN) ≤ F (σKS) ∀σKN ∪ σKS ∈ Ω, (10b)

where Ω is the union support for σKN and σKS. To test this null hypotheses, define

the empirical cumulative distribution function for σKN as

bG(σKN) =
1

NT

NTP
i=1

1(bσKN ≤ σKN), (11)

where 1 (·) denotes the indicator function and bF (σKS) is defined similarly. Next,

define the following Kolmogorov-Smirnov statistics

TEQ = sup
σKN∪σKS∈Ω

| bG(σKN)− bF (σKS)|; (12a)

TFSD = sup
σKN∪σKS∈Ω

n bG(σKN)− bF (σKS)
o
; (12b)

for testing the equality and first order stochastic dominance (FSD) relation, respec-

tively.
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Unfortunately, the asymptotic distributions of these nonparametric sample based

statistics under the null are generally unknown because they depend on the underlying

distributions of the data. Thus one needs to approximate the empirical distributions

of these test statistics to overcome this problem. The strategy following Abadie (2002)

is as follows:

(i) Let T be a generic notation for TEQ and for TFSD. Compute the

test statistics T for the original sample of {bσKN1, bσKN2 , . . . , bσKNNT
} and

{bσKS1, bσKS2, . . . , bσKSNT
}.

(ii) Define the pooled sample as Ω = {bσKN1 , bσKN2, . . . , bσKNNT
, bσKS1 ,bσKS2, . . . , bσKSNT

}. Resample NT + NT observations with replacement

from Ω and call it Ωb. Divide Ωb into two groups to obtain bTb.
(iii) Repeat step (ii) B times.

(iv) Calculate the p-values of the tests with p-value = B−1
PB

b=1 1(
bTb >

T ). Reject the null hypotheses if the p-value is smaller than some signifi-

cance level α, where α ∈ (0, 1/2).

By resampling from Ω, we approximate the distribution of the test statistics when

G(σKN) = F (σKS). Note that for (12b), G(σKN) = F (σKS) represents the least

favorable case for the null hypothesis. This strategy allows us to estimate the supre-

mum of the probability of rejection under the composite null hypothesis, which is the

conventional definition of test size.10

3 Data

The data used in this paper is identical to that of DPP and will only be briefly de-

scribed here. Real GDP (y) and physical capital stock (K), which are both measured

in constant U.S. dollars (1985 international prices), as well as skilled labor (S) and

10Ideally one would like to reestimate the nonparametric returns within each bootstrap replication
to take into account the uncertainty of the returns. Unfortunately, it could be argued that in doing
this one should reestimate the bandwidths for each bootstrap replication, which would be extremely
computationally difficult, if not impossible. Thus, the bootstrapped p-values most likely differ
slightly from their “true” values. Nonetheless, if one obtains a large p-value, it is unlikely that
accounting for such uncertainty would alter the inference. That being said, determining an ideal
bootstrapping procedure is a promising area for future research.
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unskilled labor (N) were obtained from the Penn World Tables Mark 5.6. There are

six annual observations for each of the 73 countries (both developed and developing),

spaced 5 years apart, over the period 1965-1990. Five proxies are constructed for

skilled and unskilled labor (because it is unclear how skilled labor should be defined

in a cross-country analysis) based on the Barro and Lee (2001) international edu-

cation data set (observations are available once every five years). Specifically, DPP

obtain each of the skilled proxies by multiplying achievement rates for a particular

cutoff criterion by the size of the labor force in each country at each point in time

(within the sample). Specifically, the proxies for skilled labor are as follows: (S1)

workers who have attained some college, (S2) workers who have completed secondary

education, (S3) workers who have attained some secondary education, (S4) workers

who have completed primary education, and (S5) workers who have attained some

primary education. The remaining portion of the labor force in each category is

considered unskilled labor, and is correspondingly labeled as N1, N2, N3, N4, and

N5.11

4 Results

The results of this study are displayed in Tables 1-4. Table 1 gives the SD tests for

the equality of distributions, as well as tests for FSD. Table 2 presents the elasticities

of substitution between physical capital, and skilled and unskilled labor. The table

reports the elasticity of substitution at the 25th, 50th and 75th percentile (labelled

Quartile 1, 2 and 3) along with the corresponding standard error below each estimate

in italics. Table 3 presents the median results for specific groups of countries across

the sample and Table 4 gives the median elasticities for each time period. For the

sake of comparison, the first table gives the results for each elasticity of substiitution

measure. For the sake of brevity, as well as following the suggestion of Klump and

de La Grandville (2000), the final three tables give the results for only the MES.12

11It should be obvious that S1 ≤ S2 ≤ S3 ≤ S4 ≤ S5 and that N1 ≥ N2 ≥ N3 ≥ N4 ≥ N5
12The results of the three tables for the other elasticity of substitution measures are available in

Appendix B..
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4.1 Stochastic Dominance Tests

To test the differences between the estimated distributions of parameter estimates, SD

tests are employed. Here two separate null hypotheses are tested First, the null that

the distribution (for all countries over all time periods) of the estimated elasticity

of substitution between physical capital and skilled labor (at a given threshold) is

different from the distribution of the estimated elasticity of substitution between

physical capital an unskilled labor (at the same threshold) is tested. Once it has

been determined that the distributions are different from one another, the test for

the null that σKN first order dominates σKS can be performed. This test will provide

statistical evidence of whether or not there exists a first order dominance relation,

and hence, whether or not there exists general evidence of CSC across the entire

sample.

If a dominance relation for σKN over σKS is found, one has discovered significant

evidence supporting the hypothesis that the elasiticity of substitution between physi-

cal capital and unskilled labor is larger than that of physical capital and skilled labor

for the entire sample (over all countries and time periods). Further, if dominance

is not found, one has discovered an equally interesting result. Lack of dominance

relations means that the empirical cumulative distributions cross, and that, in turn,

means that one cannot find significant evidence of CSC across the entire sample.

The results of the tests are reported in Table 1. In each circumstance, the tests

reject the null that the two distributions are equal at conventional confidence levels.

In terms of rankings, these results differ across thresholds and across elasticity of

substitution measures. Depending on the elasticity of substitution choice, there is

some significant evidence of CSC at each threshold. In the fifteen (five thresholds ×
three measures) cases considered, failure to reject the null of CSC (p-values in excess

of 0.500) is concluded in seven of them.13

Although at each threshold there is some evidence of CSC, the results for signifi-

cance differ according to the elasticity of substitution measure. For the DES measure,

there appears to be strong evidence of CSC for the lower two thresholds and no ev-

idence for the higher three thresholds. The AES only shows significant evidence of

13Here the upper bound of 0.500 is chosen as the critical point for testing the null hypotheses
given the sample size and concerns of uncertainty in the elasticities.
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CSC for the second and third thresholds and the MES measure only shows significant

evidence for the highest three thresholds.

In sum, employing SD tests on the elasticity of substitution estimates reveals

at least two findings. First, SD tests find some support for CSC in each of the

thresholds. Second, the SD tests revealed that there are cases where the cummulative

distributions cross and thus no uniform evidence of CSC across the sample.

4.2 Comparison of Quartiles

Given that we do not find FSD at each threshold for a given measure, it may prove

fruitful to examine the quartiles of the elasticity of substitution estimates. Table 2

gives the individual elasticity of substitution estimates at their quartiles for each of

the proxy levels (thresholds). When using nonlinear least squares (with or without

fixed effects) DPP find general evidence for CSC. Further, they find stronger evidence

when skilled labor is defined as those who have attained some secondary education,

completed primary education or attained some primary education and insignificant

evidence when skilled labor is defined as workers who have attained some college or

workers who have completed secondary education. However, when using a GMM-IV

estimator, their evidence for CSC is greatly weakened.

The former method is comparable to the nonparametric approach in this paper.

Table 2 shows that for each threshold, the results show an overwhelming majority

(14 of the 15) of the quartiles show evidence of CSC. Unfortunately, a majority of

this evidence is insignificant. In fact of those 14 quartiles that show evidence of CSC,

only three of them show significant evidence of CSC. This finding can be consistent

with at least two stories. First, it may be an artifact of the small sample. Second,

it may be difficult to obtain a significant result because, as Goldin and Katz (1998)

argue, CSC is subject to change and may or may not hold for different countries in

different time periods.

If the study were to stop here, it would conclude with DPP (pp. 340) that

“there is some evidence in support of the capital-skill complementarity hypothesis

at the aggregate production level, but the evidence is not very strong.” Fortunately,

the nonparametric approach allows for observation specific estimates and thus the

estimates can be further broken down to examine different strata.
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4.3 Comparison by Group

Although results at the quartiles are informative, one can always wonder how groups

of countries behave together. Table 3 reports the median elasticity of substitution

for specific groups of countries.14 The table shows CSC for most groups at most

thresholds. A few points are worth noting. First, for each of the groups, CSC generally

holds for the median values. This should not necessarily be surprising. These results

are consistent with those in the second quartile of Table 2. Second, the median

elasticity of substitution between physical capital and skilled labor for the OECD

countries is generally less than that of the non-OECD countries, but greater than

that of the Latin American countries. Second, the elasticity of substiution between

physical capital and unskilled labor is the smallest for OECD countries, regardless

of the threshold. However, more important is the prevelance of CSC across groups.

Here it is seen that CSC is more prounounced in non-OECD economies as opposed

to OECD economies. The same holds true for Latin American countries as compared

to OECD countries.

These result are not necessarily surprising. In a recent paper, Papageorgiou and

Chemlarova (2005) find that a particular group of countries (“Regime 2” in Table

3 of their paper), who have a moderate income level but a low level of education,

have a more pronounced level of CSC compared with countries with a high education

(“Regime 1”) or countries with both a low income and low education level (“Regime

3”). In this sample it is found that their results hold. CSC is more pronounced in

Regime 2 relative to Regime 3, and at the same time it is more prounced for Regime

2 relative to Regime 1. However, it must be noted that this data set is not identical

to Papageorgiou and Chemlarova (2005). Although the group of Regime 2 is the full

sample of countries, data is missing for Hong Kong and Nicaragua from Regime 1,

and for the Dominican Republic from Regime 3. Further, the aforementioned paper

uses a cross-sectional data set with fewer countries than the panel data set of the

current paper. In addition, the data in their paper is from 1988 while the data in the

current paper is from 1965 to 1990.

Another point worth noting is that CSC appears to be most prevelant at the lowest

14The median refers to the median elasticity of substitution for all countries in a specific group
over all periods studied.
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threshold. Specifically, in the seven groups of countries considered, five of them show

significant evidence of CSC. Recall that DPP were able to find more evidence of CSC

when skilled labor was defined at a low threshold. The results here show the extreme

case when skilled labor is defined as those who have attained some primary schooling.

Given that the nonparametric approach gives observation-specific parameter esti-

mates, it is possible to further analyze the variation across observations. Appendix

B gives the median elasticity for each country along with the associated standard

error. For countries across the sample, regardless of threshold, there appears to be

significant variation in the elasticity of substitution within each measure. Although

there is general evidence of CSC across the entire sample, some countries show strong

evidence of capital-skill substitutability at each threshold. Again, it is suggested that

obtaining a single estimate for an entire panel is not correct for this particular data

set. These results show the importance of obtaining observation specific estimates.

4.4 Comparison by Time Period

Table 4 presents the median elasticities by year.15 The results show general support

for CSC. However, the results are often insignificant. As in the previous sub-section,

one interesting result is that the strongest results for CSC come when skilled labor

is defined as those who have some primary education (the fifth threshold). However,

different from both DPP and above is that there is some significant evidence of CSC

when skilled labor is defined as those who have attained some college (first threshold).

Specifically, in two of the six time periods, there is significant evidence of CSC at the

median. This anomaly raises a question that deserves further study.

These results are important for at least two reasons. First, it shows weak evidence

of CSC at the median during the entire sample period. There appears to be no

systematic change across time at the median. Second, the strongest evidence of CSC

comes when skilled labor is defined by either a high or a low threshold.

15The median refers to the median elasticity of substitution for all countries in a specific time
period.
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5 Conclusion

This paper set out to study the CSC hypothesis in a panel of 73 developed and de-

veloping countries using nonparametric kernel techniques. This method allowed for

three contributions to the literature. (1) The nonparametric approach allowed for

the model to be solved using a single-level production function. (2) It did not re-

quire a specific functional form to be assumed for the technology, and (3) it allowed

for observation specific estimates of elasticities of substitution. With regard to the

first contribution, it was shown that the single-level production function sidestepped

the problem of specification choice which arose in the two-level approach. Second,

the nonparametric approach made no assumption on the functional form of the tech-

nology, nor did it require additional restrictive assumptions such as specifying initial

parameters. Finally, as nonparametric methods give parameter estimates for each ob-

servation, it was possible to obtain an elasticity of substitution for each observation

in the sample.

The inclusion of these techniques on the panel showed general evidence of CSC

across the sample. These results appeared to generally hold when examining the

quartiles of the elasticities as well as country groups and time medians. That being

said, the majority of the evidence for CSC was weak.

Further, the observation specific estimates allowed for deeper analysis of individual

countries, groups of countries as well as countries across time. It was found that the

elasticities of substitution vary across countries, groups of countries and time periods.

These results were shown to be in line with the theories of Goldin and Katz (1998) who

suggested that the elasticity of substitution between inputs varies with a country’s

stage of development and therefore is subject to change over time.

As noted in the introduction, one of the main reasons for studying the CSC

hypothesis is to attempt to explain the skilled/unskilled wage differential. Again, if

physical capital and skilled labor are found to be more complementary than unskilled

labor and physical capital, then an increase in physical capital, ceteris paribus, will

increase the demand and thus wages for skilled laborers. Unfortunately, many of the

results of this study are insignificant and therefore it is difficult to conclude that CSC

is the factor behind the rise in the skilled/unskilled wage differential.

However, it is also premature to rule out CSC as an important factor in cross-
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country studies. To help answer to this question, it is important to extend this study

in several dimesnions. First, as was stated in Section 2.3.3, imposing constraints from

the economic theory on the nonparametric estimators should improve its performance.

Also, a longer and wider sample of data may reduce the relatively large standard errors

of the nonparametric estimates. That being said, the same could hold true for the

estimates in DPP. This may lead to uncovering more cases of significant evidence of

CSC.
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Table 1 -- Stochastic Dominance Tests
Null Hypothesis G(σKN) = F(σKS) G(σKN) ≤ F(σKS)
Direct Elasticity of Substitution
Threshold 1 0.000 0.000
Threshold 2 0.000 0.000
Threshold 3 0.000 0.000
Threshold 4 0.000 0.954
Threshold 5 0.000 0.801

Allen-Uzawa Elasticity of Substitution
Threshold 1 0.000 0.000
Threshold 2 0.000 0.598
Threshold 3 0.000 0.888
Threshold 4 0.000 0.055
Threshold 5 0.000 0.000

Morishima-Blackorby-Russell Elasticity of Substitution
Threshold 1 0.000 0.692
Threshold 2 0.000 0.957
Threshold 3 0.000 0.997
Threshold 4 0.000 0.039
Threshold 5 0.000 0.015

NOTES: Probability values are obtained via bootstrapping. The null 
hypothesis is rejected if the p-value is smaller than some significance level 
α, (0 < α < 1/2).  The first column tests the null hypothesis that the two 
distributions are equal. The second column tests the null hypothesis that 
the distribution of elasticity of subsitution estimates between physical 
capital and unskilled labor dominates the distribution of elasticity of 
substitution estimates between physical capital and skilled labor (CSC).



Table 2 -- Quartile Values for the Nonparametric Estimates
Q1 Q2 Q3

σKS1 -8.311 -0.440 * 3.436
22.319 0.680 0.763

σKS2 -19.713 * -0.381 2.772
4.515 0.955 3.695

σKS3 -5.695 0.067 3.685
4.948 0.686 5.157

σKS4 -0.873 -0.050 0.651 **

0.853 0.841 1.048
σKS5 -1.281 0.010 2.233

0.665 0.689 0.370

σKN1 0.482 1.950 4.728
0.444 0.513 3.693

σKN2 0.256 2.553 7.379
3.034 8.241 1.521

σKN3 -1.588 0.917 7.933
2.996 2.087 3.894

σKN4 -2.092 1.105 4.892
1.649 2.806 1.453

σKN5 -0.344 3.152 26.004
0.565 1.963 14.650

NOTES: In the regression function used to estimate each of 
these Morishima-Blackorby-Russell elasticities, the dependent 
and independent variables are in levels.  Region and time 
effects are also included.  Q1, Q2 and Q3 refer to the first, 
second, and third quartile, respectively.  S1-S5 and N1-N5 refer 
to the different categories for skilled and unskilled labor, 
respectively.  AICc used for bandwidth selection.  Standard 
errors are listed in italics beneath each estimate.  The symbol * 
(**) corresponds to where the quantile estimates show 
significant evidence of CSC at the 5% (10%) level.  



Table 3 -- Median Elasticity of Substitution Across Different Groups of Countries
Year σKS1 σKS2 σKS3 σKS4 σKS5 σKN1 σKN2 σKN3 σKN4 σKN5

OECD -0.711 ** -0.095 -0.419 -0.065 -0.008 1.578 2.285 -0.135 -4.675 1.165
0.754 0.808 3.112 0.942 0.831 0.595 11.127 2.339 16.283 0.143

Non-OECD -0.239 -0.961 * 0.270 -0.036 0.011 * 2.401 2.708 1.966 2.819 3.739
13.485 0.381 4.106 5.699 0.244 0.778 1.048 2.221 2.717 1.627

Latin America 0.369 2.231 1.612 -0.462 * 0.005 * 2.510 2.605 3.429 4.302 3.796
0.339 1.094 1.060 1.015 0.440 0.976 1.369 1.752 0.787 0.475

Africa -11.324 -72.931 ** -3.104 0.350 0.051 2.327 7.798 3.972 2.043 4.539
7.742 39.030 8.378 8.269 2.609 4.088 2.373 22.983 5.057 1.071

Regime 1 -0.147 0.005 0.181 -0.386 -0.266 * 1.718 1.378 0.103 0.507 7.310
5.228 2.295 0.649 0.635 0.226 3.761 0.790 6.728 0.492 0.843

Regime 2 2.207 1.484 1.155 0.025 -0.045 * 2.027 1.810 1.911 2.505 1.800
1.895 1.603 1.553 1.147 0.265 0.515 0.766 0.894 0.615 0.262

Regime 3 0.035 -0.173 0.485 -0.018 0.003 * 1.239 1.416 0.147 0.735 1.723
1.439 0.915 94.814 3.640 0.185 1.030 0.954 2.429 2.191 0.207

All -0.440 * -0.381 0.067 -0.050 0.010 1.950 2.553 0.917 1.105 3.152
0.680 0.955 0.686 0.841 0.689 0.513 8.241 2.087 2.806 1.963

NOTES: In the regression function used to estimate each of these Morishima-Blackborby-Russell elasticities, the dependent and independent variables are in levels.  Region 
and time effects are also included.  The median refers to the median elasticity for all countries over all periods for a particular group.  S1-S5 and N1-N5 refer to the different 
categories for skilled and unskilled labor, respectively.  AICc used for bandwidth selection.  OECD includes countries which were in the OECD as of 1990, whereas "Regime 1, 
2, and 3" includes the countries of Regimes 1, 2 and 3 in Table 3 of Papageorgiou and Chmelarova (2005).  Standard errors are listed in italics beneath each estimate.  The 
symbol * (**) corresponds to where the median estimates exhibit significant evidence of CSC at the 5% (10%) level.



Table 4 -- Median Elasticity of Substitution Across Countries for Each Time Period
Year σKS1 σKS2 σKS3 σKS4 σKS5 σKN1 σKN2 σKN3 σKN4 σKN5

1965 -0.467 0.194 1.287 -0.099 ** 0.006 2.329 2.495 2.653 2.259 3.241
0.761 1.575 2.785 0.300 0.440 4.088 0.837 3.931 1.043 2.413

1970 -0.673 0.393 -3.922 -0.085 -0.305 * 2.264 2.956 0.062 1.240 3.411
7.202 3.090 3.305 1.692 0.328 0.694 0.797 2.864 0.745 0.359

1975 -1.562 * -0.915 -0.368 -0.053 -0.327 * 1.962 2.568 0.059 1.269 2.916
0.541 2.071 1.598 0.441 0.328 0.559 0.577 1.781 0.616 0.570

1980 -0.980 -1.252 0.035 0.040 0.071 * 1.685 3.189 0.707 0.542 3.382
2.625 4.633 0.428 0.151 0.109 0.769 12.465 0.772 0.764 0.359

1985 -1.191 ** -2.246 -1.937 0.015 -0.037 1.008 2.786 0.492 0.918 1.309
0.769 2.774 35.846 1.777 0.048 0.413 0.751 1.612 2.035 3.921

1990 1.956 -0.988 * 2.716 -0.453 1.197 2.090 0.990 2.041 0.487 11.911
15.370 0.381 1.915 2.316 0.490 0.657 0.497 1.727 0.274 23.328

All -0.440 * -0.381 0.067 -0.050 0.010 1.950 2.553 0.917 1.105 3.152
0.680 0.955 0.686 0.841 0.689 0.513 8.241 2.087 2.806 1.963

NOTES: In the regression function used to estimate each of these Morishima-Blackorby-Russell elasticities the dependent and independent variables are in levels.  
Region and time effects are also included.  The median coefficient for each year over all countries is given.  S1-S5 and N1-N5 refer to the different categories for 
skilled and unskilled labor, respectively.  AICc used for bandwidth selection.  Standard errors are listed in italics beneath each estimate.  The symbol * (**) 
corresponds to where the median estimates exhibit significant evidence of CSC at the 5% (10%) level.


